Spelling suggestions: "subject:"felt low index"" "subject:"felt low índex""
1 |
Modelagem e simulação de reatores industriais em fase liquida do tipo Loop para polimerização de propileno / Modeling and simulation of liquid phase propylene polymerization in industrial loop reactorsLucca, Eneida Aparecida de 13 November 2007 (has links)
Orientadores: Rubens Maciel Filho, Jose Carlos Costa da Silva Pinto, Priamo Albuquerque Melo Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-10T00:03:32Z (GMT). No. of bitstreams: 1
Lucca_EneidaAparecidade_M.pdf: 1657459 bytes, checksum: 56b6b6c35a2802734e03ed28ceb76c67 (MD5)
Previous issue date: 2007 / Resumo: Reatores tubulares do tipo loop são amplamente empregados nas indústrias de poliolefinas. No caso da produção de polipropileno, compõem a tecnologia Spheripol. São constituídos de duas seções tubulares interconectadas por um ponto de alimentação e por uma bomba, que promove a recirculação da massa reacional. O simulador dinâmico desenvolvido nesse trabalho é capaz de estimar valores de diversas variáveis chave no monitoramento do processo; dentre elas, o XS e o MFI. As validações feitas mostraram que o simulador é capaz de representar de forma acurada os dados experimentais disponíveis em uma planta real de polimerização, inclusive para ¿N¿ reatores em série / Abstract: Tubular loop reactors are widely used in the polyolefins industries. In the particular case of polypropylene production, loop reactors are part of the Spheripol technology. Loop reactors are composed of two tubular reactors that are connected by a feed point and a pump that is responsible for promoting recirculation of the reaction mass. The dynamic simulator developed here is able to estimate values of several important variables used to monitor the industrial process, like the XS and the MFI. The model was validated with actual industrial data obtained for different reactor configurations, including ¿N¿ reactors in series / Mestrado / Engenharia de Processos / Mestre em Engenharia Química
|
2 |
Influence of the Melt Flow Rate on the Mechanical Properties of Polyoxymethylene (POM) / Einfluss des Schmelzfließindex auf die mechanischen Eigenschaften von Polyoxymethylen (POM)Faust, Karsten, Bergmann, André, Sumpf, Jens 19 December 2017 (has links) (PDF)
In this article the correlation between the average molar mass and the melt flow rate (MFR) is achieved. Based on the example of Polyoxymethylene (POM) it is shown that a high average molar mass is associated with a low MFR (high viscosity). On the basis of this dependency, the mechanical properties of static and dynamic tensile strength, elastic modulus, hardness and notched impact strength are investigated. It was found that the characteristic values of static tensile strength, elastic modulus and hard-ness increase with increasing MFR (decreasing viscosity). On the other hand the dynamic long-term properties and notched impact strengths decrease with increasing MFR. / Im Beitrag wird der Zusammenhang zwischen der mittleren molaren Masse und des Schmelzfließindex (MFR) hergestellt. Dabei wird am Beispiel von Polyoxymethylen (POM) ersichtlich, dass eine hohe mittlere molare Masse mit einem geringen MFR (hochviskos) einhergeht. Basierend auf dieser Abhängigkeit werden die mechanischen Eigenschaften statische und dynamische Zugfestigkeit, E-Modul, Härte sowie Kerbschlagzähigkeit untersucht. Dabei konnte festgestellt werden, dass die Kenngrößen statische Zugfestigkeit, E-Modul und Härte mit steigendem MFR (abnehmende Viskosität) zunehmen. Die dynamischen Langzeiteigenschaften und Kerbschlagzähigkeiten sinken hingegen mit zunehmendem MFR.
|
3 |
Soy-Polypropylene Biocomposites for Automotive ApplicationsGuettler, Barbara Elisabeth 15 May 2009 (has links)
For the automotive sector, plastics play the most important role when designing interior and exterior parts for cars. Currently, most parts are made from petroleum-based plastics but alternatives are needed to replace environmentally harmful materials while providing the appropriate mechanical performance and preferably reduce the cost for the final product.
The objective of this work was to explore the use of soy flakes as natural filler in a composite with polypropylene and to investigate the mechanical properties, water absorption and thermal behaviour. For a better understanding of the filler, the soy flakes were characterized extensively with analytical and microscopic methods.
Two types of soy fillers were investigated, soy flakes, provided by Bunge Inc., with a 48 wt-% protein content and an industrial soy based filler with 44 wt-% protein content and provided by Ford.
The size of the soy flakes after milling was mainly between 50 and 200 µm and below 50 µm for the industrial filler. The aspect ratio for all filler was below 5. The soy flakes were used after milling and subjected to two pre-treatment methods: (1) one hour in a 50 °C pH 9 water solution in a 1 : 9 solid-liquid ratio; (2) one hour in a 50 °C pH 9 1M NaCl solution in a 1 : 9 solid-liquid ratio. A control filler, without pre-treatment was considered. The soy flakes were also compared to an industrial soy based filler provided by Ford (soy flour (Ford)). The thermogravimetric analysis showed an onset of degradation at 170 °C for the treated filler (ISH2O and ISNaCl) and 160 °C for the untreated filler.
The biocomposites formulation consisted of 30 wt-% filler, and polypropylene with/without 0.35 wt-% anti-oxidant Irganox 1010 and with/without the addition of MA-PP as coupling agent. All biocomposites were compounded in a mini-extruder, pressed into bars by injection moulding and tested subsequently.
The mechanical properties of the biocomposites are promising. An increase of the E-modulus was observed when compared to pure polypropylene. The addition of MA-PP as coupling agent increased the yield strength of the biocomposites. When pure polypropylene and the biocomposites were compared no difference could be seen for their yield strength.
The thermal behaviour deduced from differential scanning calorimetry, revealed a similar behaviour for the biocomposites and the pure polypropylene. Only the samples treated in the presence of NaCl and without a coupling agent, appear to have a slightly higher degree of crystallinity. The melt flow index was slightly increased for the biocomposites containing soy flakes pre-treated with NaCl and decreased for biocomposites containing the soy flour.
The water absorption behaviour of the biocomposites was quite similar at the beginning with a slightly lower absorption for the materials with coupling agent. After three months, all samples except the ones treated with water showed a weight loss that can be due to the leaching of the water soluble components in the untreated filler and the NaCl treated filler.
In conclusion, soy flakes represent an attractive filler when used in a polypropylene matrix if an aqueous alkaline pre-treatment is performed. The aqueous alkaline extraction also leads to the recovery of the proteins that can be used in food products while the remaining insoluble material is used for the biocomposites, avoiding the competition with the use of soy for food products...
|
4 |
Soy-Polypropylene Biocomposites for Automotive ApplicationsGuettler, Barbara Elisabeth 15 May 2009 (has links)
For the automotive sector, plastics play the most important role when designing interior and exterior parts for cars. Currently, most parts are made from petroleum-based plastics but alternatives are needed to replace environmentally harmful materials while providing the appropriate mechanical performance and preferably reduce the cost for the final product.
The objective of this work was to explore the use of soy flakes as natural filler in a composite with polypropylene and to investigate the mechanical properties, water absorption and thermal behaviour. For a better understanding of the filler, the soy flakes were characterized extensively with analytical and microscopic methods.
Two types of soy fillers were investigated, soy flakes, provided by Bunge Inc., with a 48 wt-% protein content and an industrial soy based filler with 44 wt-% protein content and provided by Ford.
The size of the soy flakes after milling was mainly between 50 and 200 µm and below 50 µm for the industrial filler. The aspect ratio for all filler was below 5. The soy flakes were used after milling and subjected to two pre-treatment methods: (1) one hour in a 50 °C pH 9 water solution in a 1 : 9 solid-liquid ratio; (2) one hour in a 50 °C pH 9 1M NaCl solution in a 1 : 9 solid-liquid ratio. A control filler, without pre-treatment was considered. The soy flakes were also compared to an industrial soy based filler provided by Ford (soy flour (Ford)). The thermogravimetric analysis showed an onset of degradation at 170 °C for the treated filler (ISH2O and ISNaCl) and 160 °C for the untreated filler.
The biocomposites formulation consisted of 30 wt-% filler, and polypropylene with/without 0.35 wt-% anti-oxidant Irganox 1010 and with/without the addition of MA-PP as coupling agent. All biocomposites were compounded in a mini-extruder, pressed into bars by injection moulding and tested subsequently.
The mechanical properties of the biocomposites are promising. An increase of the E-modulus was observed when compared to pure polypropylene. The addition of MA-PP as coupling agent increased the yield strength of the biocomposites. When pure polypropylene and the biocomposites were compared no difference could be seen for their yield strength.
The thermal behaviour deduced from differential scanning calorimetry, revealed a similar behaviour for the biocomposites and the pure polypropylene. Only the samples treated in the presence of NaCl and without a coupling agent, appear to have a slightly higher degree of crystallinity. The melt flow index was slightly increased for the biocomposites containing soy flakes pre-treated with NaCl and decreased for biocomposites containing the soy flour.
The water absorption behaviour of the biocomposites was quite similar at the beginning with a slightly lower absorption for the materials with coupling agent. After three months, all samples except the ones treated with water showed a weight loss that can be due to the leaching of the water soluble components in the untreated filler and the NaCl treated filler.
In conclusion, soy flakes represent an attractive filler when used in a polypropylene matrix if an aqueous alkaline pre-treatment is performed. The aqueous alkaline extraction also leads to the recovery of the proteins that can be used in food products while the remaining insoluble material is used for the biocomposites, avoiding the competition with the use of soy for food products...
|
5 |
Studium chování betonu při působení vysokých teplot / Behavior of concrete at high temperaturesDvořáková, Michaela January 2014 (has links)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.
|
6 |
Vliv přídavku recyklátu na strukturu a vlastnosti vysokohustotního polyetylénu / The influence of regranulate on structure and properties of high density polyethyleneHandlíř, Tadeáš January 2021 (has links)
The presented diploma thesis deals with the evaluation of the influence of the addition of 30, 60 and 90 % of recycled material on the structure and mechanical properties of high-density polyethylene (HDPE), where recycled material represents both HDPE from a several years old part and material multiple reprocessed by extrusion. The changes of supramolecular structure were examined by calorimetric measurement, which did not indicate degradation of the material due to multiple extrusion. Mechanical properties were investigated by tensile tests and dynamic-mechanical analysis. Both measurements showed the same trend, where the first and second pass of the material through the extruder led to improved mechanical properties, e.g. to increase stiffness, while the influence of the third and fourth passes through the extruder had not a significant effect on the mechanical properties. In terms of the structure and mechanical properties, a positive effect of the combination of material after the second extrusion passing (30%) with virgin material was recorded.
|
7 |
Influence of the Melt Flow Rate on the Mechanical Properties of Polyoxymethylene (POM)Faust, Karsten, Bergmann, André, Sumpf, Jens January 2017 (has links)
In this article the correlation between the average molar mass and the melt flow rate (MFR) is achieved. Based on the example of Polyoxymethylene (POM) it is shown that a high average molar mass is associated with a low MFR (high viscosity). On the basis of this dependency, the mechanical properties of static and dynamic tensile strength, elastic modulus, hardness and notched impact strength are investigated. It was found that the characteristic values of static tensile strength, elastic modulus and hard-ness increase with increasing MFR (decreasing viscosity). On the other hand the dynamic long-term properties and notched impact strengths decrease with increasing MFR. / Im Beitrag wird der Zusammenhang zwischen der mittleren molaren Masse und des Schmelzfließindex (MFR) hergestellt. Dabei wird am Beispiel von Polyoxymethylen (POM) ersichtlich, dass eine hohe mittlere molare Masse mit einem geringen MFR (hochviskos) einhergeht. Basierend auf dieser Abhängigkeit werden die mechanischen Eigenschaften statische und dynamische Zugfestigkeit, E-Modul, Härte sowie Kerbschlagzähigkeit untersucht. Dabei konnte festgestellt werden, dass die Kenngrößen statische Zugfestigkeit, E-Modul und Härte mit steigendem MFR (abnehmende Viskosität) zunehmen. Die dynamischen Langzeiteigenschaften und Kerbschlagzähigkeiten sinken hingegen mit zunehmendem MFR.
|
8 |
Mechanické vlastnosti a struktura směsí recyklovaného polyetylénu a velmi nízko hustotního polyetylénu / Mechanical properties and structure of blends of recycled polyethylene with linear low density polyethyleneKocandová, Jana January 2019 (has links)
Recycled material produced during three months from packing polyethylene foils coming from three suppliers was analysed together with one recycled material under complaint from the point of melt flow index (MFI), composition and mechanical properties. The addition of linear low density polyethylene (LLDPE) into the recycled material was studied as well. It was measured melt flow index (MFI), Differential scanning calorimetry (DSC) together with Thermogravimetry methods were used to determine composition. Selected materials were pressed to obtain films with the thickness of 1 mm to determine tensile properties. Recycled materials contained 40–65% LLDPE, small amount of polypropylene as well as chalk. The content of LDPE and LLDPE varied within one supplier and thus mechanical properties did. The results showed the difference in quality of PE films separation among all suppliers. The problems with workability of material under complaint were caused by the material composition – the amount of LLDPE predominated. The addition of LLDPE into the recycled material in the range of 5–20 % increased MFI by 13-78%. Mechanical properties of blends rich in LLDPE were similar to those of clear LLDPE. The presence of LDPE influenced more markedly only the strength to break. The blends of LDPE and LLDPE were evaluated as immiscible but with high affinity of the components with increasing contend of LLDPE. No material was chemically degraded. The methods commonly performed in manufacture, especially MFI, are not able to differentiate LDPE form LLDPE – recommended is DSC.
|
9 |
Wheat Straw-Clay-Polypropylene Hybrid CompositesSardashti, Amirpouyan 23 September 2009 (has links)
The preparation of polymeric hybrid composite consisting of organic and inorganic fillers is of interest for industries like automotive, construction and packaging. In order to understand and predict the physical and chemical properties of these hybrid composites, it is necessary to fully understand the nature and properties of the employed fillers. In this study, the preparation of polypropylene hybrid composite consisting of wheat straw and clay was investigated. A detailed study was performed on wheat straw from South Western Ontario region. The effect of grinding the straw and compounding it with polypropylene was investigated. Experiments were carried out to identify the thermal stability of the ground wheat straw with respect to their size and composition. It was important to identify a correlation between these properties in order to minimize the straw degradation by processing and also to improve the final properties of the hybrid composite. The composite samples were prepared through melt blending method using a co-rotating twin-screw extruder. Sample test bars were prepared by injection moulding. The composition of the constituents of the hybrid composite; percentages of wheat straw, clay and coupling agent, were varied in order to investigate their influence on thermal stability, water resistance and mechanical properties.
The results of the study indicated that grinding the wheat straw with a hammer mill produced particles with different sizes and shapes. It was found that through the grinding system all particles, regardless of their size, had a multi-layered structure similar to the plant structure. Further hammer milling did not produce plant particles with long aspect ratios that would be expected in a defibrillation process. Analysis of the chemical composition of wheat straw particles of different sizes and shapes was used to measure the ratio of hemicelluloses: lignin and the ash content. It was found that the large particles contained more amount of lignin whereas smaller particles had larger amount of ash content. The thermal stability of the particles was found to be a function of particle size rather than the lignin content. Particle size analysis on the wheat straw particles after the extrusion process indicated a reduction in the particle length and aspect ratio.
The thermal stability of the composites was found to be enhanced by the addition of clay particles at higher temperature and the addition of coupling agent at lower temperatures. Increasing the amount of wheat straw and clay content increased the flexural modulus and reduced the resistance for water absorption. Increasing the amount of coupling agent also increased the flexural modulus and resistance for water absorption. The morphological study by scanning electron microscopy revealed that coupling agent increased the interfacial interaction between the particles and the polymer matrix.
|
10 |
Wheat Straw-Clay-Polypropylene Hybrid CompositesSardashti, Amirpouyan 23 September 2009 (has links)
The preparation of polymeric hybrid composite consisting of organic and inorganic fillers is of interest for industries like automotive, construction and packaging. In order to understand and predict the physical and chemical properties of these hybrid composites, it is necessary to fully understand the nature and properties of the employed fillers. In this study, the preparation of polypropylene hybrid composite consisting of wheat straw and clay was investigated. A detailed study was performed on wheat straw from South Western Ontario region. The effect of grinding the straw and compounding it with polypropylene was investigated. Experiments were carried out to identify the thermal stability of the ground wheat straw with respect to their size and composition. It was important to identify a correlation between these properties in order to minimize the straw degradation by processing and also to improve the final properties of the hybrid composite. The composite samples were prepared through melt blending method using a co-rotating twin-screw extruder. Sample test bars were prepared by injection moulding. The composition of the constituents of the hybrid composite; percentages of wheat straw, clay and coupling agent, were varied in order to investigate their influence on thermal stability, water resistance and mechanical properties.
The results of the study indicated that grinding the wheat straw with a hammer mill produced particles with different sizes and shapes. It was found that through the grinding system all particles, regardless of their size, had a multi-layered structure similar to the plant structure. Further hammer milling did not produce plant particles with long aspect ratios that would be expected in a defibrillation process. Analysis of the chemical composition of wheat straw particles of different sizes and shapes was used to measure the ratio of hemicelluloses: lignin and the ash content. It was found that the large particles contained more amount of lignin whereas smaller particles had larger amount of ash content. The thermal stability of the particles was found to be a function of particle size rather than the lignin content. Particle size analysis on the wheat straw particles after the extrusion process indicated a reduction in the particle length and aspect ratio.
The thermal stability of the composites was found to be enhanced by the addition of clay particles at higher temperature and the addition of coupling agent at lower temperatures. Increasing the amount of wheat straw and clay content increased the flexural modulus and reduced the resistance for water absorption. Increasing the amount of coupling agent also increased the flexural modulus and resistance for water absorption. The morphological study by scanning electron microscopy revealed that coupling agent increased the interfacial interaction between the particles and the polymer matrix.
|
Page generated in 0.079 seconds