• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photosynthetic Oxygenation and Nutrient Utilization by Chlorella vulgaris in a Hybrid Membrane Bioreactor and Algal Membrane Photobioreactor System

Najm, Yasmeen Hani Kamal 11 1900 (has links)
Aerobic activated sludge membrane bioreactors (AS-MBR) in municipal wastewater treatment are compact systems that can efficiently perform biological organic oxidation. However, aerobic processes require mechanical aeration accounting for over 40% of total expenditure of a wastewater facility. Additionally, a global urgency for nutrient (Nitrogen/Phosphorus) removal strategies due to surges of eutrophication events requires complex MBR configurations. An innovative and cost-effective process was developed with a dual income-stream: high-quality treated effluent and value-added microalgal biomass for several applications. The proposed process involved several integrated components; an ultrafiltration AS-MBR for organic oxidation followed by a microalgal membrane photobioreactor (MPBR) to remove nutrients (N/P) through assimilation while simultaneously photosynthetically generating dissolved oxygen effluent that was recirculated back into the AS-MBR, thereby reducing the need for mechanical aeration for oxidation. A lab-scale system was fed with a synthetic medium-strength municipal wastewater. The microalgal species C. vulgaris was initially tested in batch trials as a proof-of-concept study on its potential as a photosynthetic oxygenator for the AS-MBR and identify its nutrient utilization efficiencies. The MPBR and MBR were later constructed for continuous operation, with the aim to identify an optimal process configuration. The unit processes were subsequently isolated, where the AS-MBR was subjected to a modelled algal effluent to assesses the impact of varying influent characteristics and effluent recycle rates. A microbial community analysis was performed by high-throughput sequencing and a statistical data-driven modeling approach to assess treatment performances. The MPBR stage was then subjected to the effluent achieved by the AS-MBR stage under varying operating conditions to assess its treatment performance and the resulting algal biomass biochemical composition to identify its suitability for bioethanol, biodiesel, or animal feed production. The findings of this study ultimately confirmed the ability of C. vulgaris to support the AS-MBR for organic removal and fractional nutrient removal by supplying the oxygen demand, and further achieve an effluent polish stage for nutrient removal. The process configuration also demonstrated the ability to achieve a high microalgal biomass production with the potential of extracting valuable products as an added benefit of the wastewater treatment.
2

Assessment of the flat-pannel membrane photobioreactor technology for wastewater treatment: Outdoor application to treat the effluent of an anaerobic membrane bioreactor

González Camejo, Josué 12 November 2020 (has links)
Tesis por compendio / [ES] La combinación de reactores anaerobios de membranas (AnMBRs) con el cultivo de microalgas en un fotobiorreactor de membranas (MPBR) aparece como una opción ideal dentro del marco de tecnologías sostenibles para la depuración de aguas residuales. Con esta combinación de tecnologías, se puede obtener biogás a partir de la materia orgánica presente en el agua residual, mientras que los nutrientes del efluente de AnMBR se recuperan con la biomasa algal. Además, la tecnología de membranas permite obtener un efluente limpio y apto para su reutilización. Estudios previos han demostrado la capacidad de un cultivo de microalgas para recuperar los nutrientes presentes en el efluente de un sistema AnMBR a escala laboratorio. Sin embargo, el traslado de esta tecnología a condiciones controladas de laboratorio a condiciones ambientales variables puede suponer una limitación en su aplicación industrial. Este trabajo consiste en la evaluación del proceso de cultivo de microalgas en una planta piloto MPBR alimentada con el efluente de un sistema AnMBR. Para ello se han evaluado las condiciones óptimas de operación de la planta, teniendo en cuenta tanto el proceso biológico de microalgas como la velocidad de ensuciamiento de las membranas. También se ha estudiado el efecto de otros parámetros que influyen en el proceso, como la intensidad de luz aplicada a los fotobiorreactores (PBRs), temperatura, concentración de materia orgánica, presencia de otros organismos, etc.; así como el peso específico de cada parámetro dentro del proceso. Otro objetivo consiste en la búsqueda de nuevos parámetros de control del proceso que faciliten la operación en continuo del sistema. El sistema MPBR utilizado en este estudio se mostró capaz de tratar un efluente de AnMBR, cumpliendo con los límites legales de vertido. Sin embargo, esta operación se consiguió únicamente cuando se cumplían una serie de condiciones: i) El espesor de los fotobiorreactores era estrecho (10 cm). ii) Las condiciones de operación (BRT y HRT) se mantenían dentro del rango adecuado. iii) Temperatura se mantenía habitualmente debajo del límite máximo de 30 ºC. iv) No existía acumulación de nitrito. v) La fuente principal de nitrógeno era amonio. vi) La materia orgánica presente en el cultivo no era excesiva. / [CA] La combinació de reactors anaerobis de membranes (AnMBRs) amb el cultiu de microalgues en un fotobioreactor de membranes (MPBR) apareix com una opció ideal dins el marc de tecnologies sostenibles per a la depuració d'aigües residuals. Amb aquesta combinació de tecnologies, es pot obtenir biogàs a partir de la matèria orgànica present en l'aigua residual, mentre que els nutrients de l'efluent de AnMBR es recuperen amb la biomassa algal. A més, la tecnologia de membranes permet obtenir un efluent net i apte per a la seua reutilització. Estudis previs han demostrat la capacitat d'un cultiu de microalgues per recuperar els nutrients presents en l'efluent d'un sistema AnMBR a escala laboratori. No obstant això, el trasllat d'aquesta tecnologia de condicions controlades de laboratori a condicions ambientals variables pot suposar una limitació en la seua aplicació industrial. Aquest treball consisteix en l'avaluació del procés de cultiu de microalgues en una planta pilot MPBR alimentada amb l'efluent d'un sistema AnMBR. Per a això s'han avaluat les condicions òptimes d'operació de la planta, tenint en compte tant el procés biològic de microalgues com la velocitat d'embrutiment de les membranes. També s'ha estudiat l'efecte d'altres paràmetres que influeixen en el procés, com la intensitat de llum aplicada als fotobioreactors (PBRs), temperatura, concentració de matèria orgànica, presència d'altres organismes, etc .; així com el pes específic de cada paràmetre dins del procés. Un altre objectiu consisteix en la recerca de nous paràmetres de control del procés que facilitin l'operació en continu del sistema. El sistema MPBR utilitzat en aquest estudi es va mostrar capaç de tractar un efluent de AnMBR, complint amb els límits legals d'abocament. No obstant això, aquesta operació es va aconseguir únicament quan es complien una sèrie de condicions: i) El gruix dels fotobioreactors era estret (10 cm). ii) Les condicions d'operació (BRT i HRT) es mantenien dins del rang adequat. iii) La temperatura es mantenia habitualment baix del límit màxim de 30 ºC. iv) No existia acumulació de nitrit. v) La font principal de nitrogen era amoni. vi) La matèria orgànica present en el cultiu no era excessiva. / [EN] The combination of anaerobic membrane reactors (AnMBRs) and microalgae membrane photobioreactor (MPBR) appears as an ideal option within the framework of sustainable technologies for wastewater treatment. This combination enables to produce biogas from the organic matter present in wastewater, while the nutrient content of the AnMBR effluent can be recovered from microalgae biomass. In addition, membrane technology allows obtaining a water effluent which can be suitable for reclamation. Previous studies have proved the capability of a microalgae culture to recover the nutrients present in AnMBR effluent at lab scale. However, up-scaling from controlled lab conditions to varying outdoor conditions could limit the industrial applications of this technology. This study consists of the assessment of a microalgae culture in an MPBR pilot plant fed by effluent of an AnMBR system. For this, optimal operating conditions of the MPBR plant were evaluated, considering both the microalgae biological process and the membrane fouling rate. The effect of other parameters that have an influence on the process such as light intensity applied to the photobioreactors (PBRs), temperature, organic matter concentration, presence of other organisms, etc., was also studied; as well as the specific weight of each parameter on the process. Another goal consisted of finding new controlling parameters that ease the continuous operation of the system. The MPBR system used in this study showed appeared to be capable of treating AnMBR effluent, successfully accomplishing legal discharge limits. However, this was only achieved when the following conditions were reached: i) PBR light path was as narrow as 10 cm. ii) Operating conditions (BRT and HRT) were in the appropriate range. iii) Temperature was under the máximum limit of around 30 ºC. iv) Nitrite was not accumulated. v) Ammonium was the main nitrogen source. vi) Organic matter concentration in the culture was not high. / González Camejo, J. (2019). Assessment of the flat-pannel membrane photobioreactor technology for wastewater treatment: Outdoor application to treat the effluent of an anaerobic membrane bioreactor [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133056 / Compendio
3

Methodology for Membrane Fabric Selection for Pilot-Bioreactor

Singh, Shailendra 03 October 2011 (has links)
No description available.
4

Modelación matemática del proceso de crecimiento de microalgas en el tratamiento de aguas residuales Aplicación a un fotobiorreactor de membranas (MPBR).

Viruela Navarro, Alexandre 04 September 2023 (has links)
Tesis por compendio / [ES] En el contexto actual de escasez de recursos que sufre el planeta (biomasa, agua y energía), la tecnología basada en los cultivos de microalgas para el tratamiento de aguas residuales aparece como una tecnología muy interesante que permite no sólo la eliminación de los nutrientes (N y P) presentes en el agua, sino también la recuperación de estos nutrientes en la producción de una biomasa algal de alto valor con diversas aplicaciones: generación de biogás, producción de biocombustibles y biofertilizantes, elaboración de fármacos y cosméticos, etc. Estudios previos han demostrado que el efluente de un reactor anaerobio de membranas (AnMBR) resulta ser un medio de cultivo óptimo para el crecimiento de las microalgas. No obstante, la mayoría de los estudios existentes se han llevado a cabo a escala laboratorio en condiciones controladas de luz, temperatura, pH, carga de nutrientes, etc., y normalmente siempre en experimentos batch. Este trabajo consiste en el estudio y modelación matemática del proceso de cultivo de microalgas en una planta piloto de fotobiorreactores de membrana (MPBR) operando en continuo y en condiciones outdoor para el tratamiento del efluente de un sistema AnMBR que trata agua residual urbana real. Durante la fase de experimentación de los cultivos de microalgas se han llevado a cabo diversos experimentos en la planta MPBR donde se han evaluado diversos factores que afectan al crecimiento de las microalgas: temperatura, luz solar, tiempo de retención celular (TRC), carga de nutrientes o tiempo de retención hidráulico (TRH), sistema de recirculación del cultivo y el volumen en zona oscura. Los resultados obtenidos muestran la enorme importancia de las condiciones ambientales (luz solar y temperatura) en el rendimiento de los cultivos de microalgas. La temperatura óptima del cultivo de microalgas con predominancia del género Scenedesmus sp. resultó estar en torno a los 25ºC, mientras que temperaturas por debajo de 20ºC y por encima de 25ºC afectaron negativamente a la productividad de biomasa. La operación del sistema de fotobiorreactores (FBR) sin membranas para TRH 8 días y en condiciones ambientales favorables consiguió reducir la concentración de nutrientes por debajo de los límites de vertido que marca la Directiva 98/15/CE (10 mg N·L-1 y 1 mg P·L-1) alcanzando valores de eliminación de 75,2% de N y 77,9% de P. La operación del sistema MPBR permitió desacoplar el TRC del TRH en la operación de los FBR, lo que resultó en una mejora general del rendimiento de los cultivos de microalgas y permitió obtener un efluente libre de sólidos con alto potencial de reutilización. Los sistemas de recirculación del cultivo de microalgas comparados en el estudio (bombeo mecánico vs sistema airlift) no afectaron significativamente al rendimiento del cultivo. Por otro lado, reduciendo el volumen en zona oscura de un 27,2% al 13,6% en el sistema MPBR se consiguió un incremento del 40% en la productividad de biomasa. Mediante el uso de los datos obtenidos en planta piloto se ha desarrollado un modelo matemático de crecimiento de microalgas que permite simular de manera muy precisa (R2 = 0,9954) el comportamiento de los cultivos de microalgas en un sistema MPBR. Este modelo utiliza la notación y terminología de los modelos ASM, y consta de un total de 14 componentes (10 solubles y 4 suspendidos), 11 procesos gobernados por la cinética y los equilibrios ácido-base que determinan el pH del medio. Además, el modelo considera los efectos la luz y la temperatura en el crecimiento. Como novedad interesante respecto a otros modelos matemáticos de crecimiento de microalgas ya publicados, este modelo contempla, en condiciones de ausencia de P en el medio de cultivo, el crecimiento de las microalgas a partir del polifosfato almacenado internamente. El modelo desarrollado en este trabajo pretende ser una herramienta para facilitar la implementación futura de la tecnología de cultivos de microalgas en una EDAR a escala industrial. / [CAT] En el context actual d'escassetat de recursos que sofreix el planeta (biomassa, agua i energia), la tecnologia basada en els cultius de microalgues per al tractament d'aigües residuals apareix com una tecnologia molt interessant que permet no només l'eliminació dels nutrients (N i P) presents a l'aigua, sinó també la recuperació d'aquests nutrients amb la producció d'una biomassa algal d'alt valor amb diverses aplicacions: generació de biogàs, producció de biocombustibles i biofertilitzants, elaboració de fàrmacs i cosmètics, etc. Estudis previs han demostrat que l'efluent d'un reactor anaerobi de membranes (AnMBR) resulta ser un mitjà de cultiu òptim per al creixement de les microalgues. Tot i això, la majoria dels estudis existents s'han dut a terme a escala laboratori en condicions controlades de llum, temperatura, pH, càrrega de nutrients, etc., i normalment sempre en experiments batch. Aquest treball consisteix en l'estudi i la modelació matemàtica del procés de cultiu de microalgues en una planta pilot de fotobioreactors de membrana (MPBR) operant en continu i en condicions outdoor per al tractament de l'efluent d'un sistema AnMBR que tracta aigua residual urbana real. Durant la fase d'experimentació dels cultius de microalgues s'han dut a terme diversos experiments a la planta MPBR on s'han avaluat diversos factors que afecten al creixement de les microalgues: temperatura, llum solar, temps de retenció cel·lular (TRC), càrrega de nutrients o temps de retenció hidràulic (TRH), sistema de recirculació del cultiu i el volum en zona obscura. Els resultats obtinguts mostren l'enorme importància de les condicions ambientals (llum solar i temperatura) en el rendiment dels cultius de microalgues. La temperatura òptima del cultiu de microalgues amb predominança del gènere Scenedesmus sp. va resultar estar entorn als 25ºC, mentre que temperatures per sota de 20ºC i per sobre de 25ºC van afectar negativament a la productivitat de biomassa. L'operació del sistema de fotobioreactors (FBR) sense membranes per a TRH 8 dies i en condicions ambientals favorables va aconseguir reduir la concentració de nutrients per sota dels límits d'abocament que marca la Directiva 98/15/CE (10 mg N·L-1 i 1 mg (P·L-1) assolint valors d'eliminació de 75,2% de N i 77,9% de P. L'operació del sistema MPBR va permetre desacoblar el TRC del TRH en l'operació dels FBR, la qual cosa va resultar en una millora general del rendiment dels cultius de microalgues i va permetre obtenir un efluent lliure de sòlids amb un alt potencial de reutilització. Els sistemes de recirculació del cultiu de microalgues comparats en aquest estudi (bombeig mecànic vs sistema airlift) no van afectar significativament al rendiment del cultiu. D'altra banda, reduint el volum en zona obscura del 27,2% al 13,6% al sistema MPBR es va aconseguir un increment del 40% en la productivitat de biomassa. Mitjançant l'ús de les dades obtingudes a la planta pilot s'ha desenvolupat un model matemàtic de creixement de microalgues que permet simular de manera molt precisa (R2 = 0,9954) el comportament dels cultius de microalgues en un sistema MPBR. Aquest model utilitza la notació i la terminologia dels models ASM, i consta d'un total de 14 components (10 solubles i 4 suspesos), 11 processos governats per la cinètica i els equilibris àcid-base que determinen el pH del medi. A més, el model considera els efectes de la llum i la temperatura en el creixement. Com a novetat interessant respecte d'altres models matemàtics de creixement de microalgues ja publicats, aquest model contempla, en condicions d'absència de P en el mitjà de cultiu, el creixement de les microalgues a partir del polifosfat emmagatzemat internament. El model desenvolupat en aquest treball pretén ser una eina per facilitar la implementació futura de la tecnologia de cultius de microalgues a una EDAR a escala industrial. / [EN] In the actual context of resource scarcity along the world (biomass, water and energy), microalgae-based technology for wastewater treatment appears as a promising technology that allows not only nutrient removal (N and P) from wastewater, but also the recovery of these nutrients for the production of high-value algal biomass which has different applications: biogas generation, biofuel and biofertilizer production, pharmaceuticals and cosmetics manufacturing, etc. Previous studies have proved that the effluent from an anaerobic membrane bioreactor (AnMBR) could be a suitable growth medium for microalgae cultivation. However, most of the existing studies have been carried out at bench scale under controlled conditions of light, temperature, pH, nutrient load, etc., when working in batch mode. The present work consists of the study and mathematical modelling of an outdoor pilot-scale membrane photobioreactor (MPBR) for microalgae cultivation under continuous operation for treating the effluent of an AnMBR system fed with real municipal wastewater. During the experimental phase of microalgae cultivation, different experiments were carried out in the MPBR plant to evaluate the main factors that affect microalgae growth: temperature, solar light irradiance, biomass retention time (BRT), nutrient load or hydraulic retention time (HRT), the algae culture recirculation system and the non-photic volume. The results obtained show the significant effect of the environmental conditions (solar light and temperature) on the microalgae cultivation performance. Optimum temperature for the microalgae cultures with a predominance of the genus Scenedesmus sp. resulted to be around 25ºC, while temperatures below 20ºC and above 25ºC negatively affected biomass productivity. During the operation of the photobioreactors (PBRs) system without membranes at HRT of 8 days and under favourable environmental conditions, it was possible to comply with effluent nutrient discharge limits established by Directive 98/15/CE (10 mg N·L-1 and 1 mg P·L-1) and to achieve nutrient removal efficiencies of 75.2% of N and 77.9% of P. The MPBR plant allowed decoupling BRT and TRH in the PBRs operation, which resulted in a general improvement of the microalgae cultivation performance and allowed to obtain a solid-free effluent with high potential for reuse applications. The microalgae culture recirculation systems compared in the study (mechanical pumping vs airlift system) did not significantly affect the culture performance. Moreover, reducing the non-photic volume fraction in the MPBR system from 27.2% to 13.6% resulted in an increase of 40% in biomass productivity. A mathematical model of microalgal growth was developed by making use of the data obtained in the pilot plant. This model was able to reproduce accurately (R2 = 0.9954) the overall microalgae cultivation performance in an MPBR system. This model uses the notation and terminology of the ASM models, and it considers a total of 14 components (10 soluble and 4 suspended), 11 processes governed by kinetics and acid-base equilibria to calculate the pH of the medium. In addition, the model considers the effects of solar light and temperature on microalgae growth. As an interesting novelty with respect to other published mathematical models of microalgae growth, this model contemplates the possibility of using the stored polyphosphate for growing in the absence of P in the culture medium. The model developed in this work is intended to be a tool to promote the future implementation of microalgae cultivation technology on full-scale WWTP. / This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2011-28595-C02-01/02, CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF) and Generalitat Valenciana (GVA-ACOMP2013/203), which are gratefully acknowledged. The authors also like to acknowledge the support received from Generalitat Valenciana via one VALi+d post-doctoral grant (APOSTD/2014/049). / Viruela Navarro, A. (2023). Modelación matemática del proceso de crecimiento de microalgas en el tratamiento de aguas residuales Aplicación a un fotobiorreactor de membranas (MPBR) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195826 / Compendio

Page generated in 0.0663 seconds