• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 11
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 52
  • 36
  • 28
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Removal of Heavy Metal Ions from Aqueous Solution by Alkaline Filtration

Xu, Zitong 22 January 2020 (has links)
An innovative approach for the removal of heavy metal ions such as Pb2+ and Cd2+ from aqueous solution was evaluated. It was established that alkaline filtration, which is in essence the combination of alkaline precipitation and membrane filtration, could drastically increase both the efficiency and completeness of Pb2+ or Cd2+ ions removal, producing water whose metal concentration satisfying drinking water standard from a simulation wastewater containing 5 ppm or more Pb2+ or Cd2+ ions. Filtration with three different membranes, including microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes, were studied at three different pH levels, i.e., 7.0, 8.5, and 10, in terms of metal ion rejection, flux, and permeate pH and at varied dissolved inorganic carbon (DIC) concentration. Increasing the pH of the feed in the tested range would lead to the decrease of metal ion concentration in permeate while flux was in general unaffected. When the feed pH was 10, the Pb2+ concentration in permeate was below 10 ppb regardless of the DIC concentration and membrane for filtration. The effects of DIC concentration were significant but complex. It was found that MF, UF, NF could all effectively reject Pb2+ ions at pH 8.5 and pH 10 although only NF was charged. A hypothesis was proposed to explain the mechanism of alkaline filtration based on experimental data.
12

Optimization of Hydrothermal Pretreatment and Membrane Filtration Processes of Various Feedstocks to Isolate Hemicelluloses for Biopolymer Applications

Sukhbaatar, Badamkhand 15 December 2012 (has links)
Hemicelluloses (HC) are the second most abundant plant polysaccharides after cellulose, constituting 25-30% of plant materials. In spite of their abundance, HC are not effectively utilized. Recently, considerable interest has been directed to HC-based biomaterials because of their high oxygen barrier properties, which has potential in food packaging applications. In this study, HC were extracted from sugarcane bagasse and southern yellow pine using a hydrothermal technique which utilizes hot compressed water without catalyst. The parameters affecting the yield of extracted HC such as temperature, time and pressure, were tested and optimized. Eighty four percent of xylose was extracted from sugarcane bagasse at the optimum condition, 180 °C 30 min and 1 MPa pressure. In the case of southern yellow pine, 79% of the mannose was extracted at 190 °C for 10 min and 2 MPa pressure. Concentration and isolation of HC from bagasse and southern yellow pine HC extract were performed by membrane filtration and freeze drying systems. Isolated HC were characterized by FT-IR and 13C NMR techniques and used as a starting material for film preparation. Films were prepared in 0/100, 50/50, 60/40, 70/30 and 80/20% ratios of HC and sodium carboxymethylcellulose (CMC). Thirty five percent of sorbitol (w/w of HC and CMC weight) was also added as a plasticizer. Films were evaluated by measuring water absorption, water vapor permeability (WVP), tensile property and oxygen barrier capability. At 55% relative humidity (RH) and 25 °C the water absorption of both sugarcane bagasse and southern yellow pine HC-based films tended to increase as HC content increased. The lowest WVP of sugarcane bagasse (3.84e-12 g/Pa h m) and southern yellow pine HC films (2.18e-12 g/Pa h m) were determined in 60/40 HC/CMC films. Tensile test results showed that as HC content increases the Young’s modulus decreases, deflection at maximum load and percentage of strain at break increase. It implies that the film properties are changing from stiff to elastic. The oxygen permeability for 60/40 bagasse HC/CMC film was 0.005265 cc μm / (m2 day kPa) and for 70/30 pine HC/CMC film was 0.007570 cc μm /(m2 day kPa).
13

Forward osmosis membranes for direct fertigation within the South African wine industry

Augustine, Robyn January 2017 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2017. / Water scarcity in South Africa (SA) and more specifically Cape Town, Western Cape, has escalated to disaster levels in 2018. Agriculture and irrigation account for 62% of SA’s accessible potable water (Thopil & Pouris, 2016), and although the agriculture sector plays a pivotal role in SA’s socio-economic development, the future of the sector is dependent on critical issues such as climate variability and population growth (Besada & Werner, 2015). Wine production in SA is an important agricultural activity, contributing great economic value to the agri-food sector. However, despite this, the wine industry is responsible for vast water consumption and the unsafe disposal of winery wastewater, which are critical issues from an environmental and economic standpoint. The ever-imminent crisis pertaining to the limited supply of fresh water from conventional water resources has necessitated the need to develop alternative water resources to supplement an increased water supply, which include the reuse of wastewater, ground water, brackish water (BW) and seawater (SW) desalination. When fresh water supplies are limited, agricultural irrigation is penalised. The reuse of agricultural wastewater as a substitution for potable water irrigation may prove beneficial in areas where water shortages are severe. Forward osmosis (FO) is a developing desalination technology that has received increased attention as a promising lower-energy desalination technology. FO technology relies on the natural osmotic process, driven by a concentration gradient as opposed to significant hydraulic pressures like reverse osmosis (RO). Water is extracted from a lower concentrated feed solution (FS) to a highly concentrated draw solution (DS). The term “lower energy” is only applicable for applications where the recovery of the DS is not required. FO technology offers several advantages. However, the lack of suitable membrane modules and DSs hinder its practical application. FO offers novelty applications in which specialised DSs are selected to serve as the final product water, most notably concentrated fertilisers for direct fertigation. The aim of this study was to evaluate the performance and compatibility of commercially available cellulose triacetate (CTA) and aquaporin biomimetic FO membranes with commonly used fertilisers for direct fertigation within the SA wine industry, using a fertiliser drawn forward osmosis (FDFO) system.
14

Development and evaluation of woven fabric immersed membrane bioreactor for treatment of domestic waste water for re-use

Cele, Mxolisi Norman January 2014 (has links)
Submitted in fulfillment of the academic requirements for the Master’s Degree in Technology: Chemical Engineering, Durban University of Technology. Durban. South Africa, 2015. / Increased public concern over health and the environment, the need to expand existing wastewater treatment plants due to population increase, and increasingly stringent discharge requirements, have created a need for new innovative technologies that can generate high quality effluent at affordable cost for primary and secondary re-use. The membrane biological reactor (MBR) process is one of the innovative technologies that warrant consideration as a treatment alternative where high quality effluent and/or footprint limitations are a prime consideration. MBR processes have been applied for the treatment of industrial effluent for over ten years (Harrhoff, 1990). In this process, ultrafiltration or microfiltration membranes separate the treated water from the mixed liquor, replacing the secondary settling tanks of the conventional activated sludge process. Historically, energy costs associated with pumping the treated water through the membranes have limited widespread application for the treatment of high volumes of municipal wastewater. However, recent advancements and developments in membrane technology have led to reduced process energy costs and induced wider application for municipal wastewater treatment (Stephenson et al., 2000). This report describes a small and pilot scale demonstration study conducted to test a woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) process for use in domestic wastewater treatment. The study was conducted at Durban Metro Southern Wastewater Treatment Works, Veolia Plant, South Africa. The main objective of this project was to develop and evaluate the performance of an aerobic woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) for small scale domestic wastewater treatment. The experiments were oriented towards three sub objectives: to develop the membrane pack for immersed membrane bioreactor based on WF microfilters; to evaluate the hydrodynamics of WF membrane pack for bioreactor applications; and to evaluate the long-term performance and stability of WFM-IMBR in domestic waste water treatment. The literature was reviewed on membrane pack design for established commercial IMBR. The data collected from literature was then screened and used to design the WF membrane pack. Critical flux was used as the instrument to measure the WF membrane pack hydrodynamics. Long-term operation of the WFM-IMBR was in two folds: evaluating the performance and long term stability of WFM-IMBR. The membrane pack of 20 flat sheet rectangular modules (0.56 m by 0.355 m) was developed with the gap of 5 mm between the modules. The effects of parameters such as mixed liquor suspended solids or aeration on critical flux were examined. It was observed that the critical flux decreased with the increase of sludge concentration and it could be enhanced by improving the aeration intensity as expected and in agreement with the literature. Hence the operating point for long term subcritical operation was selected to be at a critical flux of 30 LMH and 7.5 L/min/module of aeration. Prior to the long term subcritical flux of WFM-IMBR, the operating point was chosen based on the hydrodynamic study of the WF membrane pack. The pilot scale WFM-IMBR demonstrated over a period of 30 days that it can operate for a prolonged period without a need for cleaning. Under subcritical operation, it was observed that there was no rise in TMP over the entire period of experimentation. Theoretically this was expected but it was never investigated before. Good permeate quality was achieved with 95% COD removal and 100% MLSS removal. The permeate turbidity was found to be less than 1 NTU and it decreased with an increase in time and eventually stabilized over a prolonged time. Woven fibre membranes have demonstrated great potential in wastewater treatment resulting in excellent COD and MLSS removal; low permeate turbidity and long term stability operation. From the literature surveyed, this is the first study which investigated the use of WF membranes in IMBRs. The study found that the small scale WFM-IMBR unit can be employed in fifty equivalence person and generate effluent that is free of suspended solids, having high levels of solid rejection and has acceptable discharge COD for recycle. Future work should be conducted on energy reduction strategies that can be implemented in WFM-IMBR for wastewater treatment since high energy requirements have been reported by commercial IMBRs.
15

Influence of solute-solute interactions on membrane filtration

Neale, Peta Anne January 2009 (has links)
An understanding of solute-solute interactions is essential for aquatic systems as this can affect the fate and behaviour of micropollutants in the environment and engineered systems. Despite the importance of solute-solute interactions there is a general lack of understanding which may be attributed to the fact that many engineering models overlook solute-solute interactions and that the quantification of such interactions is inherently difficult. When solute-solute interactions are considered, they are often studied at unrepresentative concentrations and do not consider the influence of organic matter type or solution chemistry. Steroidal hormones, such as estradiol and estrone, were selected as model micropollutants as they are ubiquitous in the aquatic environment due to constant introduction of wastewater effluent, and can have implications for growth and development of organisms including impaired fertility and behavioural abnormalities. The purpose of this study was to develop a methodology to quantify solute-solute interactions at environmental concentrations, and to determine the implications of such interactions in membrane filtration. A solid-phase microextraction (SPME) technique was developed to quantify solutesolute interactions at environmental (low) concentrations. Using SPME, organic matter-water partition coefficients (log KOM) were measured for a range of steroidal hormones including estradiol, estrone, progesterone and testosterone with different organic matter types such as humic acid. The dominant mechanism of hormoneorganic matter interactions was identified as hydrogen bonding. In the case of estrone and progesterone the log KOM values were significantly influenced by organic matter type and concentration, as well as solution chemistry. No difference was observed for estradiol and testosterone due to generally weaker sorption to organic matter. Previous studies have indicated that the presence of organic matter can alter micropollutant retention in membrane filtration. Much of the current literature focuses on solute-membrane interactions, as the influence of solute-solute interactions are typically difficult to determine in membrane filtration. Therefore, hormone-organic matter interactions were studied to determine if this interaction had an influence on hormone removal by ultrafiltration (UF) using a range of molecular weight cut-off (MWCO) membranes. The results indicated increased retention of estrone in the presence of humic acid, while organic matter concentration and solution chemistry influenced retention by affecting solute-solute interactions. The findings of this study indicate the importance of solute-solute interactions in membrane filtration and experimental log KOM results were used to quantify the findings and elucidate the influences of 1) membrane sorption, 2) solute-solute interactions and 3) solute-foulant interactions. Further, the removal of steroidal hormones using a magnetic ion exchange (MIEX®) resin with a range of MWCO UF membranes was studied as such sorbents can be used to improve micropollutant removal in wastewater treatment. Greater removal with IX-UF was observed compared to UF alone and the main hormone removal mechanisms were sorption to MIEX® and solute-fouling interactions. The findings of this study indicate that it is indeed possible to quantify solute-solute interactions at environmental concentrations using SPME, with hydrogen bonding being the main mechanism of interaction for steroidal hormones and organic matter. Further, micropollutant retention by membrane filtration can be influenced by solutesolute interactions.
16

Fundamental flux enhancement modelling of membrane microfiltration

Valentine, Mark Edward January 2011 (has links)
Membrane filtration is used in a variety of industries, including water treatment and the food industry. Membrane systems include microfiltration and reverse osmosis processes. Membranes used in reverse osmosis are nonporous or pores at 0.2-2 A. This work will focus on mechanical microfiltration. These filtration systems suffer from an accumulation of the rejected material near the membrane surface. This causes additional resistance to the flow through the membrane (flux), resulting in a decline in the performance of the system. Sparging gas bubbles into the mixture has been shown to improve performance. The flow field promotes the transport of material away from the membrane surface and into the bulk. The goal is to predict the sparging that will achieve the maximum flux. Existing flux prediction models often assume steady shear at the membrane surface but in bubbling regimes the shear stresses are unsteady. In this thesis a model is developed to calculate the flux based not solely on shear but on the behaviour and resistance of suspended particles in a gas-liquid flow field. The bubble shape and flow field is calculated using computation fluid dynamics (CFD). The flow around a bubble in gap between two parallel flat sheet membranes is investigated. The calculated bubble shape correlates well with the results seen in experiments. The bubble rise velocity with respect to gap width is shown to transition between that expected in the literature for extended flow for large gap widths and that for a two dimensional case for smaller gap widths. The transitional region however, does not behave as may be expected. The rise velocity does not monotonically decrease as the gap width is reduced. The particle concentration is found by the solution of the convection-diffusion equation, where the convection velocity terms are given by the results of the CFD calculation. The permeate flux is then calculated using a resistance model giving the enhancement due to the bubble. The model is also applied to single phase crossflow. As the shear stresses are steady in this single-phase flow regime, established membrane shear linked mass-transfer coefficient methods can be employed. Good agreement is found between the model and theory. The flux results obtained when the model is applied to the flow around the bubble show a peak in performance with respect to the gap between the membranes for a given bubble volume. The optimal flux enhancement is found to correlate well with the bubble size compared to the flow area. The results show a bubble width of around 60% of the flow width provides the best flux performance.
17

Επεξεργασία αγρο-βιομηχανικών αποβλήτων και απομόνωση πολυφαινολών με τεχνολογία μεμβρανών

Ζάγκλης, Δημήτριος 07 June 2013 (has links)
Η παρούσα εργασία είναι χωρισμένη σε τέσσερις θεματικές ενότητες. Στην πρώτη ενότητα παρουσιάζονται οι βασικές φυσικοχημικές μέθοδοι επεξεργασίας που χρησιμοποιήθηκαν, οι οποίες είναι η κροκίδωση/καθίζηση και η διήθηση με μεμβράνες, καθώς και οι βασικές αρχές που τις διέπουν. Η δεύτερη ενότητα της παρούσας εργασίας αποτελείται από την παρουσίαση εφαρμογών της τεχνολογίας μεμβρανών σε συνδυασμό με απόσταξη υπό κενό και διάφορα προσροφητικά μέσα για την αντιμετώπιση προβλημάτων της οινοποιίας. Πιο συγκεκριμένα, εξετάστηκε η αφαίρεση πτητικής οξύτητας από ερυθρό και λευκό οίνο, που οδήγησε σε συνολική απομάκρυνση της τάξεως του 90%, καθιστώντας τον οξειδωμένο οίνο κατάλληλο προς πώληση. Επίσης εξετάστηκε η απομόνωση αιθανόλης και ταυτόχρονη παραγωγή οίνου με μειωμένο περιεχόμενο σε αλκοόλ. Με την προτεινόμενη μέθοδο παρήχθει διάλυμα αιθανόλης 23% vol και οίνος με μειωμένο αλκοόλ 6.7% vol. Τρίτη και τελευταία εφαρμογή ήταν η αφαίρεση αναγωγικών οσμών από λευκό οίνο, η οποία επιτεύχθηκε πλήρως με τη χρήση φίλτρου ενεργού άνθρακα. Στην τρίτη ενότητα παρουσιάζεται μια διεργασία επεξεργασίας αποβλήτου βιομηχανίας χρωμάτων με το συνδυασμό ενός βήματος κροκίδωσης/καθίζησης με μεμβράνες υπερδιήθησης και αντίστροφης ώσμωσης. Το τελικό διήθημα της διεργασίας, από περίπου 20000 mg/l COD που είχε το αρχικό απόβλητο, έχει περίπου 50 mg/l COD, γεγονός που το καθιστά κατάλληλο για ανακύκλωση στη βιομηχανία, ή απόρριψη στο περιβάλλον. Στην τέταρτη και τελευταία ενότητα παρουσιάζεται μια συγκριτική ανάλυση και ανάλυση βιωσιμότητας των διαθέσιμων μεθόδων επεξεργασίας αποβλήτου ελαιοτριβείου, βασισμένες στην αποδοτικότητα, το κόστος και το ενεργειακό αποτύπωμα της κάθε μεθόδου. Τέλος παρουσιάζεται μια μέθοδος επιλογής της καταλληλότερης μεθόδου επεξεργασίας σύμφωνα με τη βαρύτητα που δίνει κάποιος σε κάθε ένα από τα τρία προαναφερθέντα χαρακτηριστικά. / The present study is divided into four chapters. In the first chapter the psychochemical treatment methods that were used with the underlying basic principles are presented. These methods include coagulation/flocculation and membrane filtration. The second chapter is concerned with the implementation of membrane filtration, combined with vacuum evaporation and adsorption materials, in order to address problems occurring in winery processes. More specifically, the removal of volatile acidity from red and white wine was tested, leading to its reduction by 90%, rendering oxidized wine suitable for distribution. Furthermore, the removal of ethanol and the production of low alcohol wine were tested. Through the proposed method, a solution with 23% vol of ethanol and wine with 6.7 vol % were produced. Third and last application was the removal of odors from white wine, which was accomplished through the use of activated carbon. In the third chapter a process for the treatment of paint industry effluents with the combination of coagulation/flocculation with Ultrafiltration and Reverse Osmosis membranes is presented. The final effluent, compared to the initial COD which was around 20000 mg/l, had a 50 mg/l COD and was suitable for recycling in the industrial process or to be rejected to the environment. In the fourth and final chapter a sustainability analysis and benchmarking of the existing treatment methods of Olive Mill Wastewater is presented, based on their effectiveness, cost and CO2 emissions. Finally, a selection technique for the most suitable method is presented, based on the weight given to each one of the aspects given above, by the user.
18

Membrane filtration : fouling and cleaning in forward osmosis, reverse osmosis, and ultrafiltration membranes

Siddiqui, Farrukh Arsalan January 2017 (has links)
A comparison of fouling in osmotically driven processes with that in pressure driven processes is the main focus of the thesis. Forward osmosis (FO) and reverse osmosis (RO) have received considerable attention for water treatment and seawater desalination. This research compared the nature of fouling in FO mode with that in RO starting with the same initial flux in connection with cleaning effects and then comparing to those in ultrafiltration membranes. In all cases, with cleaning as an integral part, the extent of fouling reversibility, and the question whether a critical flux could be determined were examined. The work during the first phase (undertaken at Oxford) quantified the removal of reversible fouling through rinsing by cold and hot water for a range of concentrations using the foulants dextran and carboxymethyl cellulose. The flux-TMP relationship was conventionally compared to that of the clean water flux. The later phase (at Singapore) compared the fouling in FO and RO by alginate in terms of multiple parameters using cellulose tri acetate (CTA) and thin film composite (TFC) membranes. Silica and alginate were selected as model foulants. Whilst experimental water flux profiles in the present study did not exhibit significant differences in trend between FO and RO fouling, foulant resistance for FO was found to be increasingly greater than for RO with the progression of the fouling tests. This was further corroborated by membrane autopsies post fouling tests; both foulant mass deposition density and specific foulant resistance for FO were greater than for RO. The analysis clearly revealed that FO is essentially more prone to fouling than RO which was presumably due to less flux decline in FO (or greater average flux) as compared to that in RO in result of ICP-self compensation effect which is opposite to the prevailing claim in the literature. Additionally, the present study did not find evidence that hydraulic pressure in RO has a role in foulant layer compaction. FO membrane fouling by real waters was the focus of the final phase of the research at SMTC. Pilot scale FO experiments were conducted on spiral wound CTA membrane with treated waste water obtained from a NEWater factory (Singapore) as the feed. In the second stage, experiments were repeated at bench scale with membrane coupons taken from the spiral wound membranes used earlier. The key finding was that the mass transfer coefficients in the Spiral-Wound module were around 50% lower than the corresponding values in the flat sheet unit and this severely limited the fluxes. The reason could be attributed to strong internal concentration polarisation in the former, where tightly wound spacers act to increase the structural parameter.
19

Recycling Water and Nutrients When Producing the Cyanobacterium Synechocystis sp. PCC 6803

January 2015 (has links)
abstract: Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using permeate obtained from concentrating the biomass by cross-flow membrane filtration. I used a kinetic model based on the available light intensity (LI) to predict biomass productivity and evaluate overall performance. During the initial phase of the study, I integrated a membrane filter with a bench-top photobioreactor (PBR) and created a continuously operating system. Recycling permeate reduced the amount of fresh medium delivered to the PBR by 45%. Biomass production rates as high as 400 mg-DW/L/d (9.2 g-DW/m2/d) were sustained under constant lighting over a 12-day period. In the next phase, I operated the system as a sequencing batch reactor (SBR), which improved control over nutrient delivery and increased the concentration factor of filtered biomass (from 1.8 to 6.8). I developed unique system parameters to compute the amount of recycled permeate in the reactor and the actual hydraulic retention time during SBR operation. The amount of medium delivered to the system was reduced by up to 80%, and growth rates were consistent at variable amounts of repeatedly recycled permeate. The light-based model accurately predicted growth when biofilm was not present. Coupled with mass ratios for PCC 6803, these predictions facilitated efficient delivery of nitrogen and phosphorus. Daily biomass production rates and specific growth rates equal to 360 mg-DW/L/d (8.3 g/m2/d) and 1.0 d-1, respectively, were consistently achieved at a relatively low incident LI (180 µE/m2/s). Higher productivities (up to 550 mg-DW/L/d) occurred under increased LI (725 µE/m2/s), although the onset of biofilm impeded modeled performance. Permeate did not cause any gradual growth inhibition. Repeated results showed cultures rapidly entered a stressed state, which was followed by widespread cell lysis. This phenomenon occurred independently of permeate recycling and was not caused by nutrient starvation. It may best be explained by negative allelopathic effects or viral infection as a result of mixed culture conditions. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2015
20

Caractérisation multi-échelles d'un système de filtration en présence d'un biofilm / An upscaled study of a membrane filtration process in presence of biofilms

Habibi, Sepideh 08 July 2014 (has links)
Dans un procédé de filtration, un fluide traverse une membrane (barrière sélective). Une force motrice s’applique entre les deux côtés de la membrane qui peut être un gradient de pression, température ou un potentiel électrique/chimique. Dans les procédés de filtration par un gradient de pression, certains composés du milieu fluide, traversent la membrane alors que d’autres sont retenues sur la surface membranaire. Ces procédés sont très utiles dans différents domaines de l’industrie, notamment en ce qui concerne le traitement des eaux et des effluents, biotechnologie, agroalimentaire et pharmacie. En plus les procédés de filtration offrent des installations plus compactes avec une optimisation des coûts opérationnels comparant avec des procédés traditionnels de séparation notamment distillation et cristallisation. Par ailleurs, ces procédés se réalisent en absence des additifs chimique et changement de la phase. Dans cette étude, on se focalise sur les procédés de microfiltration. L’inconvénient principal de ces procédés est l’accumulation continue de particules/molécules sur la surface de la membrane. Ceci affecte la sélectivité de la membrane, modifie la qualité et la quantité de liquide passant à travers la membrane et conduit à une augmentation des coûts et de l’énergie. Le Colmatage (encrassement) membranaire se produit dans tous les types de procédés membranaires et par conséquent est connu le principal obstacle à l’utilisation répandue de ces procédés. Différentes techniques sont utiles pour surmonter les effets de l’encrassement de la performance de la membrane: le traitement physico-chimique des membranes utilisées, la modification des conditions opératoires (flux tangentiel de la solution d’alimentation sur la surface de la membrane est souvent appliqué pour réduire au minimum l’accumulation de particules), l’utilisation de membranes moins sensibles au colmatage, etc. Tout dépendant de la nature des solutions traitées, les particules déposées sont très variables. Les micro-organismes, des matières organiques naturelles notamment les protéines, les polysaccharides, les substances humides, les oxydes inorganiques et les sels contribuent au colmatage des membranes. Dans les dernières années, un grand nombre d’études expérimentales ont été investis pour comprendre les mécanismes de colmatage. Il a été souligné que les propriétés physico-chimiques de la membrane, la chimie des solutions et les conditions opératoires sont les trois principaux facteurs influant sur les mécanismes de colmatage. En parallèle, les modèles théoriques ont été proposés pour confirmer / décrire les observations expérimentales. La modélisation du colmatage membranaire est un outil essentiel pour évaluer les mécanismes qui le causent. Il permet également prédire la performance du système de filtration et par conséquent trouver des stratégies adaptées pour empêcher la modification de la performance membranaire pendant le procédé de filtration. En général, les modèles de classifient en deux grandes catégories: les modèles de transport de masse qui se concentrent sur le transport de solutés dans le procédé de filtration, et les modèles de colmatage basés sur le blocage des particules/molécules sur la surface ou à l’intérieur de la membrane. Dans la plupart des cas, les modèles dépendent fortement des paramètres empiriques ou semi-empiriques et restent phénoménologique. 1. Avoir une meilleure compréhension des mécanismes du colmatage membranaire lors de la filtration d’un milieu liquide contenant les micro-organismes en suspension. Il est important de souligner que des eaux industrielles et des eaux usées dans plusieurs domaines appartiennent à ce type d’effluents. 2. Proposer un modèle macroscopique décrivant les mécanismes de colmatage observés. [...] / During a membrane filtration process, a liquid medium is filtered through a membrane(selective barrier). The applied driving force between two sides of the membrane can be a gradient of pressure, temperature or a chemical/electrical potential.In pressure driven filtration processes (application of a pressure gradient as driving force between two sides of the membrane), certain components of the liquid medium pass through the membrane, while others are retained at the membrane surface. These processes are widely used as separation techniques in different industrial fields like waste water treatment, biotechnology, food and pharmacy. Compared to conventional techniquesof separation (distillation, crystallization, ...), membrane processes offer more compact installations with more optimized operational costs. Moreover, membrane processes are mainly performed in absence of chemical additives and phase change. In this work we focus on the pressure-driven microfiltration membrane processes.The main disadvantage of these processes is the continuous accumulation of particles on the membrane surface. This affects the membrane selectivity, modifies the quality and the quantity of the liquid passing through the membrane and leads to an increase of energy costs. Membrane fouling occurs in all types of membrane processes and therefore is known as the major obstacle for widespread use of these processes. Different techniques are used to overcome the effects of fouling on the membrane performance : physical-chemical treatment of used membranes, modification of the operational conditions (tangential flow of the feed solution to the membrane is often applied for minimizing the particle accumulation to the membrane surface), use of membranes less susceptible to fouling, etc. Depending on the nature of the treated solutions, the deposited particles are highly variable. Microorganisms, natural organic matter such as proteins, polysaccharides, humid substances, inorganic oxides and salts contribute notably to membrane fouling.It should be noted that membrane fouling problem is a multi-physics (hydrodynamics,mass transport, physics, chemistry), multi-scale (different length scales are involved:molecules, pores and membrane surface) and time dependent (evolution of the membrane microstructure and the molecule-surface interactions) phenomena.In the last decades, a huge number of experimental studies have been invested to understand fouling mechanisms. It has been pointed out that membrane physicochemical properties, solution chemistry and operational conditions are the three major factors affecting the fouling mechanisms. In parallel, theoretical models have been proposed to confirm/describe the experimental observations.Modeling of membrane fouling is an essential tool for assessing the fouling mechanisms. It helps predicting the membrane performance and consequently finding adapted strategies to prevent their modification during the filtration process.In general, the models can be classified into two main categories: mass transport models which focus on solute permeation during the filtration process, and fouling models based on particle or solute blocking within the membrane porous structure. In most of the cases, models depend strongly on the empirical or semi-empirical parameters and thus remain phenomenological. Two main objectives have been set for the present work: 1. Get a better understanding of the membrane fouling mechanisms during filtration of a liquid medium containing suspended microorganisms. It should be pointed out that several Industrial streams and wastewaters belong to this kind of effluents.2. Propose a macroscopic model describing the observed fouling mechanisms. [...]

Page generated in 0.1489 seconds