Spelling suggestions: "subject:"cembrane proteins."" "subject:"5membrane proteins.""
471 |
Unraveling the role of SNARE interactions in neurotransmitter releaseChen, Xiaocheng. January 2005 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Vita. Bibliography: 209-224.
|
472 |
Characterization of sorting motifs in the dense core vesicle membrane protein phogrin /Bauer, Roslyn A. January 2008 (has links)
Thesis (Ph.D. in Cell Biology, Stem Cells, & Development) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 138-155). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
|
473 |
Dissection of protein-protein interactions that regulate dendritic growth and synaptic transmission /Pradhan, Anuradha January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 117-135.
|
474 |
Eicosanoid-mediated repellent signaling in the nerve growth cone : a role for the PKC substrate MARCKS /Gatlin, Jesse C., January 2005 (has links)
Thesis (Ph.D. in Cell and Developmental Biology) -- University of Colorado at Denver and Health Sciences Center, 2005. / Typescript. Includes bibliographical references (leaves 123-141). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
|
475 |
Conception guidée par la physiologie de biopiles bioinspirées implantables / Physiological considerations for the design and integration of bioinspired implantable biofuel cellsAlcaraz, Jean-Pierre 19 October 2016 (has links)
On peut imaginer dans un futur proche que des micro-robots implantés pourront suppléer la défaillance de certaines fonctions essentielles. C’est déjà le cas avec les stimulateurs cardiaques dont les piles au lithium sont bien adaptées à leur fonctionnement pendant des années de vie du patient. Cependant, pour des systèmes plus gourmands en énergie, il convient d’améliorer la longévité et la puissance volumique de ces piles. La stratégie que nous avons choisie est basée sur une approche biomimétique et deux voies ont été suivies pour créer une biopile bioinspirée : les biopiles enzymatiques génèrent un courant électrique à partir de l’oxydation de molécules organiques et la réduction d’oxygène en eau. Les biopiles à base de membranes biomimétiques génèrent un potentiel électrique à partir du transfert d’ions au travers une membrane biomimétique.Les biopiles enzymatiques, qui utilisent par exemple le glucose et l’oxygène, sont théoriquement capables de fonctionner indéfiniment car ces substrats sont toujours présents dans l’organisme. Cependant, la biocompatibilité et la performance à long terme de ces biopiles restent des verrous pour leur mise en œuvre chez l’homme. Cette thèse décrit la conception et l’implantation de nouvelles biopiles enzymatiques chez différents modèles animaux. Leur implantation constitue un véritable défi technologique et nous amenons des solutions guidées par la physiologie en abordant les problèmes de biocompatibilité mais aussi de techniques de mesure électrique.Nous sommes maintenant capables d’implanter ces biopiles chez de gros animaux en analysant en temps réel les performances de la biopile implantée.Cette thèse développe également le concept de biopile à base de membranes biomimétiques. Il s’agit d’une biopile mettant en œuvre des protéines de transport (par exemple des canaux ioniques) insérées dans des membranes biomimétiques. Nous avons démontré la faisabilité de la transformation d’un gradient de NaCl en gradient de protons. Nous avons aussi réussi à générer une différence de potentiel de 20 millivolts avec une membrane plane de 38 mm². Cette membrane biomimétique, contenant l’échangeur sodium/proton NhaA, est stable pendant plus de 15 jours. / We believe that in the near future micro-robots or artificial implanted organs can replace failing essential organs. Lithium batteries of cardiac pacemakers are well adapted to operate for years into sick patients. However, for next generation energy intensive implanted devices, longevity and volumic power of these batteries have to be improved.We chose two biomimetic approaches to create bioinspired biofuel cells: the enzymatic biofuel cells generate electrical current from the oxidation and the reduction of organic or inorganic compounds. The biomimetic biofuel cell generate an electrical potential from ion transfer across a biomimetic membrane.The enzymatic biofuel.cells, utilizing glucose and oxygen, are theorically able to work almost indefinitely as their substrates are always present in the body fluids. However, the biocompatibility and the long-term performance of these biofuel cells for a human implantation remain a real bottleneck. This thesis describes the design and the implantation of of new enzymatic biofuel cells in different animal models. The implantation of such devices is challenging and we brought creative solutions with a physiological point of view by addressing biocompatibility problems and electrical measurement techniques. We are now capable to implant these biofuel cells in big animals by analyzing the performances of the biofuel cell in real time.This thesis initiates the biomimetic biofuel cell concept. It consists in membrane transport protein (i.e ion channels) incorporated in a biomimetic membrane. The building of a biomimetic device demonstrates the transformation of a NaCl gradient into a proton gradient. We also generate a 20 mV voltage with a 38 mm² flat membrane. This biomimetic membrane containing the NhaA sodium/ proton exchanger is stable for more than two weeks.
|
476 |
Fonction d'une protéine membranaire : étude structurale et dynamique par RMN / The function of a membrane protein : studies of structure and dynamics by NMRKurauskas, Vilius 18 January 2017 (has links)
L’utilisation de détergents est inévitable pour les études structurales des protéines membranaires. Dodecylphosphocholine (DPC) est un des détergents les plus utilisés pour ce type d’études employant la spectroscopie de résonance magnétique nucléaire (RMN) en solution. L’effet des détergents sur la structure et la dynamique des macromolécules est une problématique importante, mais peu étudiée à ce jour. Dans cette étude nous avons caractérisé la dynamique à l’échelle de la milliseconde, la liaison des substrats ainsi que des propriétés structurales de trois protéines membranaires différentes solubilisées dans des micelles de DPC. Ces protéines font partie de la famille des transporteurs mitochondriaux et nous avons choisi les séquences de la levure (ORC1, GGC1, AAC3). Nous avons détecté de la dynamique à l’échelle de la milliseconde qui est distribuée d’une manière asymétrique à travers la structure. En contradiction avec des propos de la littérature, nous montrons que cette dynamique n’est pas corrélée à la fonction, puisqu’elle n’est pas modifiée par des mutations qui inhibent le transport effectué par ces protéines quand elles sont reconstituées dans des liposomes. En plus, nous avons pu montrer que leur spécificité par rapport aux substrats, n’est pas conservée quand ces transporteurs sont reconstitués dans du DPC, mettant en question leur fonctionnalité dans ce détergent. La RMN a aussi permis de démontrer que les structures tertiaire et secondaire sont perturbées dans les micelles avec quelques hélices transmembranaires apparaissant exposées au solvant. Nous avons donc conclu que la présence du détergent a un effet fort sur les trois transporteurs mitochondriaux de notre étude et probablement d’autres protéines similaires, en les rendant très flexible. Nos résultats indiquent un probable effet général de ce détergent sur les protéines membranaires, comme nous le discutons dans une analyse détaillée de quelques études de protéines membranaires décrites dans la littérature. Dans la seconde partie de ce travail, nous avons adressé une question fondamentale de la dynamique des protéines: comment se comportent les protéines dans des cristaux ? Nous avons étudié la dynamique de l’ubiquitine cristalline à l’échelle de la milliseconde afin de comprendre l’influence de la maille cristalline sur ce type de mouvement. Pour ce faire, nous avons employé la RMN à l’état solide et des simulations de dynamique moléculaire de la protéine dans différents réseaux cristallins distincts. Il est intéressant à noter que dans ces cristaux on détecte toujours des processus locaux d’échange dynamique sur une échelle de temps de la milliseconde. Cependant, en comparant les résultats obtenus avec différentes formes cristallines, nous constatons que les paramètres thermodynamiques des différents états en échange et les vitesses d’interconversion entre ces dernières sont significativement modifiés par les contacts cristallins. De plus, nous avons détecté des mouvements globaux de type «rocking» des ces molécules à l’état cristallin qui surviennent également à l’échelle de la milliseconde. Ceci suggère que les mouvements globaux et locaux sont corrélés. Cette observation ouvre la discussion de l’importance de ce type de mouvements pour la qualité et l’interprétation des données des expériences de diffraction des rayons-X. / The use of detergents is often unavoidable in the structural studies of membrane proteins. Dodecylphosphocholine (DPC) is one of the most commonly used detergents for such studies in solution state NMR spectroscopy. The effect of detergent on structure and dynamics remains an important and poorly understood question. In this study we have investigated millisecond dynamics, substrate binding and structural features of three different yeast proteins from mitochondrial carrier family (GGC1, ORC1 and AAC3) in DPC micelles. We have detected millisecond dynamics, which are asymmetrically distributed across the structure. Contrary to previous claims, we show that these dynamics are unrelated to function, as they are not affected by the substitutions which abolish mitochondrial carrier transport in proteoliposomes. Furthermore, we could show that the very well-defined substrate specificity of these proteins in membranes is abolished when they are reconstituted in DPC, questioning their functionality. Structural investigations have revealed that both tertiary and secondary structures of these carriers are perturbed in DPC micelles, with some TM helices showing substantial solvent exposure. We have concluded from these observations that DPC detergent strongly perturbs these, and likely other mitochondrial carriers by rendering them very flexible. Our findings point to a possibly general effect of this detergent on membrane proteins, as we discuss with examples of previously studied membrane proteins. In the second part we have addressed a fundamental question of protein dynamics: how do proteins move inside crystals? We have investigated ms dynamics in a crystalline ubiquitin to gain the insight on the impact of the crystalline lattice on such motions, using solid-state NMR and ms long MD simulations of explicit crystal arrangements. Interestingly a local dynamic exchange process on a ms time scale is still present in crystals. However, by comparing different crystal forms we establish that the thermodynamics of the exchanging states and their interconversion rate constants are significantly altered by the crystal contacts. Furthermore, we detect overall "rocking" motion of molecules in the crystal, occurring on a tens-of-ms time scale, and provide evidence that overall and local motion are coupled. We discuss the implications of ms dynamics on the data quality in X-ray diffraction experiments.
|
477 |
Approches Recombinantes pour l’Etude Structure/Fonction des Protéines E1, E2 et p7 du Virus de l’Hépatite C / A Recombinant Approach to Study the Structure and Function of the Hepatitis C Virus E1, E2 and p7 proteinsSoranzo, Thomas 18 May 2015 (has links)
Le virus de l'hépatite C (VHC) est une cause majeure d'affection hépatique chronique, notamment la cirrhose et le cancer du foie. On estime que 170 millions de personnes dans le monde sont des porteurs chroniques du VHC et que 3 à 4 millions de personnes sont infectées chaque année. Un des handicaps majeurs de la recherche sur le VHC est l'absence de systèmes de culture in vitro efficaces et de modèles animaux. Nous avons ainsi choisi une approche recombinante pour l'étude de protéines E1, E2 et p7 du VHC.Les protéines E1, E2 et p7 qui sont impliquées dans des étapes essentielles du cycle viral sont des protéines membranaires. Cependant, l'expression recombinante de cette classe de protéine est extrêmement complexe. En effet, la surexpression des protéines membranaires est souvent toxique pour les cellules hôtes. Ce phénomène est provoqué par l'agrégation ou la dégradation des protéines dans le cytoplasme dû à un manque de membrane disponible pour assurer leur intégration sur la cellule hôte. De plus, la surexpression de protéines membranaires induit la saturation de la machinerie cellulaire liée aux protéines membranaires. Ce détournement empêche le déroulement d'un cycle cellulaire normal et est ainsi fatal pour la cellule hôte. La forte concentration de protéines membranaires ou encore le fait que celles-ci soient hétérologues peut également provoquer la déstabilisation de la membrane de la cellule hôte et de son homéostasie. Afin de nous affranchir de ces limitations, nous avons utilisé une méthode de production des protéines membranaires sous forme native par un système acellulaire en présence de liposomes ; une technologie brevetée par l'université Joseph Fourier et exploitée par la société Synthelis. Dans un premier temps, nous avons procédé à la mise en place du système de production exploitant un lysat bactérien d'E. coli et d'un mélange énergétique complémentaire. Nous avons ensuite utilisé ce system pour étudier la viroporine p7. Cette protéine est essentielle pour la production de particules virales infectieuses et est impliquée dans l'assemblage viral ce qui en fait une cible thérapeutique intéressante. La production de protéoliposomes p7 en grande quantité nous a permis la caractérisation de la protéine par des techniques biochimiques et biophysiques. Nous avons mis en évidence l'inhibition de l'oligomérisation de p7 par le HMA qui ainsi inhibe sa fonction canal ionique. Grâce à la flexibilité du système d'expression acellulaire nous avons caractérisé la structure de la viroporine dans la membrane par réflectivité de neutron et avons confirmé la forme en entonnoir du complexe protéique. Des résultats préliminaires sur les proéoliposomes E1E2 quant à eux permettent d'espérer la production prochaine de particules virales mimant le VHC afin de mieux l'étudier et de lutter contre cette épidémie.L'ensemble de ces résultats confirment la pertinence de l'expression de protéines membranaires sous formes natives en système acellulaire en présence de liposomes. Les protéoliposomes produits constituent des nouveaux outils pour l'étude du VHC et permettent d'envisager de très grandes applications thérapeutiques ainsi que le développement de biomédicaments basés sur l'utilisation de protéines membranaires recombinantes. / The Hepatitis C virus (HCV) is a major cause of chronic liver disease, including cirrhosis and liver cancer. An estimated 170 million people worldwide are chronically infected with HCV and 3 to 4 million people are infected each year. One of the major handicaps of the HCV research is the lack of effective in vitro culture systems and animal models. To adress this issue, we chose a recombinant approach to study the E1, E2 and p7 proteins of HCV.The E1, E2 and p7 proteins are involved in critical steps of the viral cycle. They are membrane proteins, a class of protein that is extremely complex to express. Indeed, overexpression of membrane proteins is often toxic to the host cells. This phenomenon is caused by protein aggregation or degradation in the cytoplasm due to a lack of available membrane space for their integration into the host cell. Moreover, overexpression of membrane proteins induces saturation of the cellular machinery linked to membrane proteins. This diversion prevents the flow of a normal cell cycle and is fatal to the host cell. Destabilization of the host cell's membrane and its homeostatis may also be caused by the high concentration of membrane proteins or their heterologous nature. To circumvent these limitations, we used a method for producing membrane proteins in their native form by a cell-free system in the presence of liposomes; a technology patented by the University Joseph Fourier and licenced by the startup company Synthelis. First, we have set up the cell-free production system using a bacterial lysate from E. coli and a complementary energy mix. We then used this system to study the p7 viroporine. This protein is essential for the production of infectious virus particles and is involved in viral assembly making it an attractive therapeutic target. The production of a large quantity of p7 proteoliposomes allowed us to characterize the protein by biochemical and biophysical techniques. We have demonstrated the inhibition of oligomerization of p7 by HMA, which thereby inhibits its ion channel function. Thanks to the flexibility of the cell-free expression system we have characterized the structure of the viroporine within the membrane in a neutron reflectivity assay and have confirmed the funnel shape of the protein complex. Preliminary results on proteoliposomes E1E2 offer hope for the production viral particles mimicking the hepatitis C virus in order to better study the virus and fight against this epidemic.Together, these results confirm the suitability of the expression of membrane proteins in native forms using a cell-free system in the presence of liposomes. Proteoliposomes products are a new tool for the study of HCV and consideration for very broad therapeutic applications and the development of biopharmaceuticals based on the use of recombinant membrane proteins.
|
478 |
Synthèse de biomolécules agissant comme inhibiteurs de l'ARN polymérase ARN dépendante du virus de l'hépatite C et développement de nouveaux surfactants comme stabilisants des protéines membranaires par réseaux de ponts salins / Synthesis of biomoleculesactingas inhibitors ofRNA-dependent RNA polymerase ofhepatitis Cvirus and development of novel generation of surfactants acting as membrane proteins stabilizersMeguellati, Amel 27 January 2015 (has links)
Le projet de thèse se focalise sur la synthèse de biomolécules et se subdivise en deux parties. La première partie concerne la conception et la synthèse de dérivés de produits naturels d'intérêt thérapeutique nommés aurones en vue de mettre au point de nouvelles molécules à activité antivirale. Récemment, les aurones ont été identifiées comme étant des inhibiteurs de l'ARN-polymérase ARN-dépendante (NS5B) du virus de l'hépatite C (VHC). Cette enzyme, présente chez le virus mais absente chez l'homme, joue un rôle central dans la réplication virale. Suite à ces résultats antérieurs, les efforts ont été poursuivis et, dans le cadre de cette thèse, nous avons entrepris,d'une part, la synthèse d'analogues originaux dont le cycle B des aurones a été remplacé par des hétérocycles et, d'autre part, la synthèse depseudodimères d'aurones dans le but d'affiner les exigences structurales pour améliorer l'effet inhibiteur.L'activité a été évaluée selon des tests enzymatiques et cellulaires et a permis d'identifier quelques candidats doués d'une bonne activité inhibitrice et d'une faible toxicité. La deuxième partie du projet de thèse, sans lien avec la première partie,concerne des aspects plus fondamentaux et porte sur la synthèse de nouveaux surfactants agissant comme agents stabilisants lors des procédures d'extraction et de cristallisation des protéines membranaires. Les surfactants sont des composants clés dans le domaine de la biologie structurale et de la biochimie des protéines membranaire. Ils sont nécessaires pour maintenir les protéines membranaires dans leur état fonctionnel après extraction. La grande majorité des protéines membranaires est riche en résidus basiques à l'interface. Sur la base de cette caractéristique, une nouvelle famille de surfactants est développée et testée sur des protéines membranaires appartenant aux pompes d'efflux ABC multi-résistantes. / The PhD project focuses on biomolecules and is divided into two parts. The first part concerns the design and synthesis of natural product derivatives with therapeutic interest in order to develop new molecules with antiviral activity. Recently, aurones were identified as new inhibitors of hepatitis C virus (HCV) NS5B polymerase. Following these results, efforts were continuedand we undertook, on the one hand,the synthesis of original analogues in which the aurone B-ring was replaced by a heterocyclic rings and, on the other hand, the synthesis of aurone pseudodimers in order to refine the structural requirements to improve the inhibitory effect. The potent NS5B inhibitory activity combined with their low toxicity make aurones attractive drug candidates against HCV infection. The second part of the PhD thesis is unrelated to the first part and concerns more fundamental aspects. It focused on the synthesis of new surfactants acting as stabilizing agents during extraction of membrane proteins (PM). Surfactants are required for maintaining PM in their functional state after extraction from membrane lipid matrix. The vast majority of PM shares a net enrichment in basic residues at the interface between membrane and cytoplasm, a property known as the positive inside rule. Based on this feature, a new family of surfactants is developed and tested on membrane proteins belonging to the multidrug ABC efflux pumps family.
|
479 |
Expression hétérologue de la connexine humaine 43 dans Escherichia coli / Heterologous expression of human connexin 43 in Escherichia coliSilacheva, Maria 10 March 2014 (has links)
Les protéines membranaires (PMs) sont les composants fonctionnels principaux des membranes biologiques. Les processus cellulaires fondamentaux sont régulés à l’aide des PMs. Malgré leur importance et leur intérêt scientifique et pharmaceutique, les structures des PMs ne représentent qu’une partie mineure des structures 3D répertoriées. Les PMs humaines sont des cibles particulièrement intéressantes mais parmi plus de 7000 PMs humaines, seules 30 structures ont été élucidées.Les raisons principales qui rendent les PMs très difficiles à étudier sont leur faible abondance et leur nature hydrophobe. En effet, le niveau d’expression des PMs dans leur environnement naturel est habituellement faible et la surexpression hétérologue aboutit souvent à une protéine inactive.Les connexines font partie de la famille des PMs intégrales de vertébrés. Elles sont largement exprimées dans tout le corps et sont impliquées dans les processus essentiels à un fonctionnement physiologique normal. En s’oligomérisant elles établissent des canaux intercellulaires qui forment des jonctions lacunaires. La communication des jonctions lacunaires joue un rôle essentiel dans la fonction des tissus et le développement des organes. Ainsi, les mutations génétiques des connexines provoquent des désordres héréditaires. Les connaissances actuelles portent principalement sur la physiologie des connexines et la perméabilité des pores. Difficiles à produire pure, homogène et en quantité suffisante pour la cristallisation, l’unique structure de résolution atomique de jonction lacunaire est un polymère de la connexine 26. La connexine 43 (Cx43), protéine de jonction lacunaire la mieux étudiée, est exprimée dans tout le corps humain. Les études structurales de microscopie électronique ont montré que le domaine cytoplasmique C-terminal de Cx43 (Cx43CT) est flexible et diminue la qualité de diffraction des cristaux 2D. La troncation de la majorité de Cx43CT améliore la résolution des segments transmembranaires de Cx43. Tronqué au niveau du résidu 263, le mutant Cx43-263T est néanmoins capable de former des cristaux 2D et de s’assembler en jonctions lacunaires. L’œuvre présenté est consacré à l’étude de Cx43, Cx43-263T et Cx43CT.L’optimisation des codons du gène de la connexine et la minimisation de la stabilité de la structure secondaire d’ARNm ont considérablement augmenté l’expression de Cx43 et Cx43-263T. De nouvelles procédures de purification de Cx43-263T et Cx43 ont été élaborées. La protéine purifiée a été reconstituée en polymère amphiphile amphipol A8-35 et caractérisée par des approches de SEC, DLS et SAXS. Des techniques indépendantes ont montré l’auto-assemblage de Cx43-263T fonctionnelle en hexamères.Cx43 homogène a été surexprimée dans E. coli, purifiée et caractérisée par SEC, DLS, DSC et SAXS. L’oligomérisation a été mesurée en fonction de la concentration.Cx43-263T et Cx43 fusionnées à la protéine Mistic ont été surexprimées dans E. coli. La séparation de Mistic de la connexin a été testée avec différentes protéases, jonctions, conditions de clivage et soit in vivo soit in vitro. Toutes les constructions ainsi générées ont démontré une haute résistance aux protéolyses spécifiques. Mistic (membrane integrating sequence for translation of integral membrane protein constructs) est une séquence de protéine de B. subtilis, qui permet l'adressage des PMs intégrales dans la membrane. Mistic a été surexprimée chez E. coli et la protéine homogène a été purifiée avec divers détergents. Alors que la structure tertiaire de Mistic, solubilisée avec de l'oxyde de lauryldimethylamine, est déjà déterminée, la structure native de Mistic dans un milieu lipidique, qui permettrait de comprendre sa fonction, n’est pas encore disponible. Dans le travail présenté ici, Mistic a été reconstituée dans des lipides différents et utilisée pour des essais initiaux de cristallisation in meso. Mistic a de plus été utilisée pour la production d’anticorps anti-Mistic. / Membrane proteins (MPs) are major functional components of biological membranes. Keycellular processes are regulated with the help of MPs. Despite high importance and greatscientific and pharmaceutical interest, structures of MPs represent only a tiny fraction of all3D structures in Protein Data Bank. Human MPs are particularly challenging targets. Out ofmore than 7000 human MPs, structures of only about 30 were elucidated.The main reasons which make MPs so difficult to study are their low natural abundance andhydrophobic nature. Expression level of MPs in their natural sources is usually rather low.Heterologous overexpression often leads to inactive protein.Connexins comprise a family of vertebrate integral MPs that are widely expressed throughoutbody and involved in a wide variety of processes essential for normal physiological function.They are able to oligomerize and form intercellular channels which compose gap junctions.Gap junctional communication plays crucial role in normal tissue function and organdevelopment. Connexin gene mutations cause a number of inherited disorders.By now a wealth of knowledge is available about physiology of connexins and their channelpore permeability. However, atomic resolution structure of gap junction channel formed byonly one connexin family member (connexin 26) was determined. This is mostly explained bydifficulty to produce sufficient for crystallization amount of pure and homogenous protein.Connexin 43 (Cx43) is the best-studied gap junction protein, and it is widely expressedthroughout the human body. Initial structural studies by electron microscopy have shown thatflexible C-terminal cytoplasmic domain of Cx43 (Cx43CT) worsens diffraction quality of 2Dcrystals. Removal of most of the Cx43CT improved resolution of transmembrane segments ofCx43. Truncated at residue 263 mutant of Cx43 (Cx43-263T) still was able to form2D crystals and assembled into gap junctions. Thus, the present work is dedicated to the studyof three forms of Cx43, namely Cx43-263T, Cx43CT, and full-length Cx43.Performed in our work connexin gene optimization for E.coli codon bias and minimization ofstability of mRNA secondary structure significantly enhanced expression of Cx43 and Cx43-263T. Procedures for Cx43-263T and Cx43 purification were developed. The purified proteinwas reconstituted into amphipathic polymer amphipol A8-35 and characterized by SEC, DLS,and SAXS. Applied independent techniques showed self-assembling of purified Cx43-263Tinto hexamers demonstrating its functionality.Cx43CT was overexpressed in E.coli and purified to homogeneity. The protein wascharacterized by SEC, DLS, TSA, and SAXS. The concentration-dependent oligomerizationwas established.In the beginning of our project Cx43-263T and Cx43 were overexpressed in E. coli usingMistic fusion protein. A number of constructs providing various linkers and proteaserecognition sites were generated. To remove Mistic from the produced proteins in vivo and invitro cleavage were tested. All generated constructs demonstrated high resistance to specificproteolysis in wide range of conditions.Mistic (membrane integrating sequence for translation of integral membrane proteinconstructs) from B. subtilis was overexpressed in E.coli and purified to homogeneity usingdifferent detergents. While the tertiary structure of solubilized in lauryldimethylamine oxideMistic was determined earlier, the native structure of Mistic in lipid environment elucidatingits function is not available yet. In the present work Mistic was reconstituted into differentlipids and used for initial in meso crystallization trials. Additionally, Mistic was used forproduction of anti-Mistic antibodies.
|
480 |
Etudes structurales des rhodopsines microbiennes et des autres protéines membranaires au moyen de la cristallographie aux rayons X et de la modélisation informatique / Structural studies of microbial rhodopsins and other membrane proteins by means of X-ray crystallography and computer modelingGushchin, Ivan 05 September 2014 (has links)
Chaque cellule vivante sur notre Terre est entourée d'une membrane lipidique. Les protéines résidant dans la membrane exécutent multitude de fonctions essentielles pour la survivance de la cellule. Parmi eux sont le transport actif et passif dans et hors de la cellule, la signalisation et la catalyse des réactions.Une des plus grandes familles de protéines membranaires sont rhodopsins microbiennes, qui utilisent l'énergie de la lumière pour leur fonction. Les membres de cette famille comptent parmi eux les pompes de protons, cations et anions, entraînée par l'illumination, les canaux ioniques activés par l'illumination et, finalement, photorécepteurs. Bien que les aspects fondamentaux de leur fonctionnement ont été connus depuis un certain temps, il ya une abondance de questions sans réponse. Dans cette thèse, plusieurs structures de rhodopsines microbiennes (y compris la première structure de protéorhodopsine et la première structure de la pompe à sodium) sont présentés et analysés. Les structures ouvrent la voie pour comprendre les similitudes et les différences entre les différents rhodopsines microbiennes et pour exploiter cette connaissance pour créer de meilleurs instruments à base de rhodopsines microbiennes pour des applications biologiques, par exemple, dans le domaine de optogenetics.Alors que la première partie de ce travail porte sur les nouvelles structures de rhodopsines microbiennes, la deuxième partie présente l'approche de simulation pour comprendre la signalisation en fonction des rhodopsines sensorielles dans phototaxie. Les domaines HAMP des protéines transductrices des signals des rhodopsines sensorielles sont étudiés au moyen de la dynamique moléculaire, et il est démontré que les simulations peuvent être utilisés pour la construction et la validation des structures atomiques des domaines de signalisation, ainsi que pour la compréhension des changements conformationnels associée à signalisation, initié par les transformations des rhodopsine sensorielles.La troisième et la dernière partie décrit le travail sur la protéine IPCT-DIPPS de Archaeoglobus fulgidus, une enzyme catalysant deux étapes consécutives de di-inositol-phosphate biosynthèse. La structure résolue peut servir de modèle pour comprendre le mécanisme catalytique de transférases CDP-alcool, une grande famille de protéines comptant des milliers de membres, parmi lesquels sont cinq protéines humaines, qui catalysent les étapes majeures de la biosynthèse des lipides. La structure a également été utilisé pour prédire les sites de liaison des ligands sur le site actif de l'enzyme et pour proposer le mécanisme d'action catalytique.Pour résumer, cette thèse présente les études structurales de diverses protéines membranaires par la cristallographie aux rayons X et la modélisation qui font progresser notre compréhension des aspects fondamentaux et pratiques de fonctionnement des protéines membranaires. / Every living cell on Earth is surrounded by a lipid membrane. Proteins residing in the membrane perform a variety of functions crucial for the cell's survival. Among them are active and passive transport in and out of the cell, signaling and reaction catalysis.One of the largest membrane protein families are microbial rhodopsins, which utilize light energy for their function. Members of this family count among them light-driven proton, cation and anion pumps, light-gated ion channels and photoreceptors. While the basic aspects of their functioning have been known for some time, there is a plenty of unanswered questions. In this dissertation, several structures of microbial rhodopsins (among them the first proteorhodopsin structure and the first light-driven sodium pump structure) are presented and analyzed. The structures open the way for understanding the similarities and differences between the various microbial rhodopsins and for exploiting this understanding to create better microbial rhodopsin-based instruments for biological applications, for example, in the field of optogenetics.While the first part of this work deals with the novel structures of microbial rhodopsins, the second part presents the simulation approach for understanding the sensory rhodopsin-based signaling in phototaxis. The HAMP domains of the sensory rhodopsin transducer protein are studied by means of molecular dynamics, and it is demonstrated that the simulations may be used for building and validating the atomic structures of signaling domains, as well as for understanding the signaling-associated conformational changes, initiated by light-driven sensory rhodopsin transformations.The third and the last part describes the work on the Archaeoglobus fulgidus IPCT-DIPPS proteins, an enzyme catalyzing two consecutive steps of di-inositol-phosphate biosynthesis. The determined structure may serve as a model for understanding the catalytic mechanism of CDP-alcohol transferases, a large family of proteins counting thousands of members, among which are five human proteins that catalyze the major steps of lipid biosynthesis. The structure was also used to predict the binding sites of the ligands at the enzyme active site and to propose the mechanism of catalytic action.To sum up, this dissertation presents the structural studies of various membrane proteins by means of X-ray crystallography and modeling that advance our understanding of fundamental and practical aspects of membrane protein functioning.
|
Page generated in 0.0747 seconds