• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design and verification of catalytic membrane reactor for H2 recovery from H2S

Chan, Pui Yik Peggy, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Hydrogen sulfide is toxic by-product of many petroleum, petrochemical and mineral treatment operations. Due to the increasing stringent environment regulations, toxic H2S must be completely removed from industrial waste gases before venting to the atmosphere. The H2S decomposition reaction is a well known thermodynamically limited reaction. Alumina membrane fixed bed catalytic reactors offer the potential for improved conversions at reduced operating temperature due to product separation and catalyst activity. A theoretical and experimental work dealing with a packed bed membrane reactor is the subject of this thesis. A tubular alumina membrane reactor possessing thermal and corrosion resistance has been developed. A multicomponent permeation study indicated that the fluxes of gases could be quantitatively described as a combination of Knudsen diffusion and viscous flow through the porous alumina membrane. The catalytic decomposition of hydrogen sulfide to hydrogen and sulfur was conducted in membrane reactor incorporating a commercial porous alumina membrane in combination with catalytic function of bimetallic RuMo sulfide catalyst. The obtained results demonstrate the possibility of achieving conversion above the equilibrium conversion. The reaction rate is equal to the intrinsic rate since both internal/external mass transfer and heat transfer resistance are negligible for the size of catalyst particles considered. Results obtained with this system have shown a maximum of 2.3 times the equilibrium conversion at the operating temperature 983K, which was equivalent to the conversion at operating temperature 1200K in a conventional fixed bed reactor. The conversion enhancement was significant for the operation with high sweep to feed molar ratio. The reactor configuration of membrane reactor appeared to have an influence on its performance. Comparative experimental and simulation study showed that the cocurrent mode gave slightly higher conversion over counter-current mode. Mathematical models were developed for the reactor, based on plug flow behavior. Simulation had been performed in order to validate the model against experimental data. Reactor optimization was carried out using the validated model. The simulation results from the non-isothermal model were in reasonable agreement with the experimental data. On the other hand, the isothermal model which neglected heat effects that took place in the reactor, has leaded to over-predicted conversion. This study also illustrated that predictive simulations could be used to explore the effects of recycle operation; the optimization study showed that the alumina membrane reactor permitting retentate recycle, could achieve up to 48.6% conversion, corresponding to 6 folded of the equilibrium conversion. The simulations provide a logical methodology for experimental planning and design. To further elucidate the effect of reactor configuration, operation conditions and permeation parameters on the performance of membrane reactors, a high permselective Pt-composite MR model was developed. Comparison of alumina MR and Pt-composite MR was carried out via computer simulation. Porous membrane reactor with higher permeability but lower Permselectivity can attain comparable conversion as the composite membrane reactor with higher permselectivity but lower permeability. Ptcomposite MR was more superior to alumina MR without recycle. Retentate recycle in alumina MR is shown to outperform the Pt-composite MR. Alumina MR was therefore considered as potential candidate for industrial H2S treatment.
22

Macromolecular fouling during membrane filtration of complex fluids

Ye, Yun, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Macromolecular components, including protein and polysaccharides, are viewed as one type of major foulants in the complex feed membrane filtration systems such as membrane bioreactor (MBR). In this thesis, the mechanisms of macromolecular fouling including protein and polysaccharide in the complex feed solution are explored by using Bovine serum albumin (BSA) and alginate as model solution. During the filtration of BSA and washed yeast with 0.22 ????m PVDF membrane, it was found that the critical flux of mixture solution was controlled by washed yeast concentration while the existence of BSA significantly changed the cake reversibility of much larger particles. The fouling mechanisms of alginate, as a model polysaccharide solution, were investigated both in dead end and crossflow membrane filtration. In the dead end experiments, it was found that the cake model appears to fit the entire range of the ultrafiltration data while the consecutive standard pore blocking model and cake model are more applicable to microfiltration membranes. The alginate was featured with high specific cake resistance and low compressibility despite some variations between different membranes. The specific cake resistance ( c ) is similar to c of BSA and actual extracellular polymer substance (EPS) in MBR systems reported in the literature, and higher than that of many colloidal particles. In a system contained alginate-particles mixture, it was found that the existence of alginate dramatically increased the cake specific resistance and decreased the cake compressibility. The fouling mechanism of alginate was also studied using long term cross flow filtration under subcritical flux. A two-stage TMP profile similar to that typically observed in MBR was obtained, confirming the important role of EPS during membrane fouling in MBR. In addition to adsorption, trace deposition of alginate also contributed to the initial slow TMP increase during the subcritical filtration. TMP increase during the long-term filtration was found not only due to the increase of the amount of deposition, but also the increase of specific cake resistance. A combined standard pore blocking and cake filtration model, using a critical pore size for the transition time determination, was developed and fit the experimental results well.
23

Membrane fouling of activated sludge

Shi, Xinlong., 史昕龍. January 2004 (has links)
published_or_final_version / abstract / toc / Civil Engineering / Master / Master of Philosophy
24

Design and verification of catalytic membrane reactor for H2 recovery from H2S

Chan, Pui Yik Peggy, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Hydrogen sulfide is toxic by-product of many petroleum, petrochemical and mineral treatment operations. Due to the increasing stringent environment regulations, toxic H2S must be completely removed from industrial waste gases before venting to the atmosphere. The H2S decomposition reaction is a well known thermodynamically limited reaction. Alumina membrane fixed bed catalytic reactors offer the potential for improved conversions at reduced operating temperature due to product separation and catalyst activity. A theoretical and experimental work dealing with a packed bed membrane reactor is the subject of this thesis. A tubular alumina membrane reactor possessing thermal and corrosion resistance has been developed. A multicomponent permeation study indicated that the fluxes of gases could be quantitatively described as a combination of Knudsen diffusion and viscous flow through the porous alumina membrane. The catalytic decomposition of hydrogen sulfide to hydrogen and sulfur was conducted in membrane reactor incorporating a commercial porous alumina membrane in combination with catalytic function of bimetallic RuMo sulfide catalyst. The obtained results demonstrate the possibility of achieving conversion above the equilibrium conversion. The reaction rate is equal to the intrinsic rate since both internal/external mass transfer and heat transfer resistance are negligible for the size of catalyst particles considered. Results obtained with this system have shown a maximum of 2.3 times the equilibrium conversion at the operating temperature 983K, which was equivalent to the conversion at operating temperature 1200K in a conventional fixed bed reactor. The conversion enhancement was significant for the operation with high sweep to feed molar ratio. The reactor configuration of membrane reactor appeared to have an influence on its performance. Comparative experimental and simulation study showed that the cocurrent mode gave slightly higher conversion over counter-current mode. Mathematical models were developed for the reactor, based on plug flow behavior. Simulation had been performed in order to validate the model against experimental data. Reactor optimization was carried out using the validated model. The simulation results from the non-isothermal model were in reasonable agreement with the experimental data. On the other hand, the isothermal model which neglected heat effects that took place in the reactor, has leaded to over-predicted conversion. This study also illustrated that predictive simulations could be used to explore the effects of recycle operation; the optimization study showed that the alumina membrane reactor permitting retentate recycle, could achieve up to 48.6% conversion, corresponding to 6 folded of the equilibrium conversion. The simulations provide a logical methodology for experimental planning and design. To further elucidate the effect of reactor configuration, operation conditions and permeation parameters on the performance of membrane reactors, a high permselective Pt-composite MR model was developed. Comparison of alumina MR and Pt-composite MR was carried out via computer simulation. Porous membrane reactor with higher permeability but lower Permselectivity can attain comparable conversion as the composite membrane reactor with higher permselectivity but lower permeability. Ptcomposite MR was more superior to alumina MR without recycle. Retentate recycle in alumina MR is shown to outperform the Pt-composite MR. Alumina MR was therefore considered as potential candidate for industrial H2S treatment.
25

Macromolecular fouling during membrane filtration of complex fluids

Ye, Yun, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Macromolecular components, including protein and polysaccharides, are viewed as one type of major foulants in the complex feed membrane filtration systems such as membrane bioreactor (MBR). In this thesis, the mechanisms of macromolecular fouling including protein and polysaccharide in the complex feed solution are explored by using Bovine serum albumin (BSA) and alginate as model solution. During the filtration of BSA and washed yeast with 0.22 ????m PVDF membrane, it was found that the critical flux of mixture solution was controlled by washed yeast concentration while the existence of BSA significantly changed the cake reversibility of much larger particles. The fouling mechanisms of alginate, as a model polysaccharide solution, were investigated both in dead end and crossflow membrane filtration. In the dead end experiments, it was found that the cake model appears to fit the entire range of the ultrafiltration data while the consecutive standard pore blocking model and cake model are more applicable to microfiltration membranes. The alginate was featured with high specific cake resistance and low compressibility despite some variations between different membranes. The specific cake resistance ( c ) is similar to c of BSA and actual extracellular polymer substance (EPS) in MBR systems reported in the literature, and higher than that of many colloidal particles. In a system contained alginate-particles mixture, it was found that the existence of alginate dramatically increased the cake specific resistance and decreased the cake compressibility. The fouling mechanism of alginate was also studied using long term cross flow filtration under subcritical flux. A two-stage TMP profile similar to that typically observed in MBR was obtained, confirming the important role of EPS during membrane fouling in MBR. In addition to adsorption, trace deposition of alginate also contributed to the initial slow TMP increase during the subcritical filtration. TMP increase during the long-term filtration was found not only due to the increase of the amount of deposition, but also the increase of specific cake resistance. A combined standard pore blocking and cake filtration model, using a critical pore size for the transition time determination, was developed and fit the experimental results well.
26

Macromolecular fouling during membrane filtration of complex fluids /

Ye, Yun. January 2005 (has links)
Thesis (Ph. D.)--University of New South Wales, 2005. / Also available online.
27

Ανάπτυξη καταλυτικών μεμβρανών και μελέτη της λειτουργίας τους για παραγωγή καθαρού υδρογόνου

Μπούτικος, Παναγιώτης 07 July 2010 (has links)
Στην παρούσα διδακτορική διατριβή μελετήθηκε η ανάπτυξη και ο χαρακτηρισμός μεμβρανών οξειδίου του πυριτίου σε πορώδη υποστρώματα α-Al2O3 και κορδιερίτη. Επίσης εξετάστηκε η απόδοσή τους σε καταλυτικούς αντιδραστήρες μεμβράνης για την αντίδραση μετατόπισης του CO με ατμό. Αρχικά, παρασκευάστηκαν κολλοειδή διαλύματα αιωρημάτων οξειδίου του πυριτίου (SiO2) και ένυδρου υδροξειδίου του αλουμινίου (γ-AlOOH) χρησιμοποιώντας την τεχνική sol-gel. Τα αιωρήματα αυτά εναποτέθηκαν είτε στην εξωτερική επιφάνεια του υποστρώματος, είτε στην εσωτερική ή και στις δυο επιφάνειες με την μέθοδος της εμβάπτισης (dip-coating). Τα υποστρώματα και οι σχηματιζόμενες μεμβράνες χαρακτηρίστηκαν με την χρήση ποροσιμετρίας υδραργύρου και με ηλεκτρονική μικροσκοπία σάρωσης (SEM). Η ικανότητα των μεμβρανών αυτών να διαχωρίζουν μίγματα H2, CO2 και CO αξιολογήθηκε με την πραγματοποίηση μετρήσεων ειδικής παροχής μάζας των μεμβρανών και των υποστρωμάτων. Τα μίγματα που χρησιμοποιήθηκαν είχαν σύσταση παραπλήσια αυτής της εξόδου ενός αντιδραστήρα καταλυτικής αναμόρφωσης. Από τα πειράματα αυτά βρέθηκαν τιμές Συντελεστή Διαχωρισμού (Separation Factor) και Ειδικής Παροχής Μάζας (Flux) μέσα από τις μεμβράνες. Επίσης πραγματοποιήθηκε εναπόθεση καταλυτικών υμενίων Pt/TiO2 σε πορώδες υπόστρωμα κορδιερίτη. Τα υμένια αυτά χρησιμοποιήθηκαν ως καταλυτικοί αντιδραστήρες μεμβράνης για την αντίδραση μετατόπισης του CO με ατμό (water gas shift). Τα αποτελέσματα των πειραμάτων αυτών αξιολογήθηκαν με την χρήση μαθηματικού μοντέλου μονοδιάστατου, ισοθερμοκρασιακού καταλυτικού αντιδραστήρα μεμβράνης. Μελετήθηκε η επίδραση της κινητικής της αντίδρασης, της διαπερατότητας καθώς και της εκλεκτικότητας της μεμβράνης στους ακόλουθους δείκτες: α) η μετατροπή του CO, β) το ποσοστό ανάκτησης του υδρογόνου στο διήθημα και γ) το μοριακό κλάσμα του CO και του H2 και στα δύο ρεύματα. Τα αποτελέσματα παρουσιάζονται σαν συνάρτηση των αδιάστατων αριθμών κινητικής της αντίδρασης, Damköhler (Da), και του αριθμού διαπέρασης, Pe. Βρέθηκε ότι οι μεμβράνες με χαμηλές τιμές εκλεκτικότητας (~10) μπορούν να βελτιώσουν την μετατροπή του CO. Η μέγιστη αύξηση παρατηρήθηκε όταν ο αριθμός Da είναι περίπου ίσος με τον αριθμό διαπέρασης Pe. Αν και η μετατροπή αυξάνεται με την εκλεκτικότητα, η πιο σημαντική επίδραση παρατηρήθηκε για τιμές εκλεκτικότητας έως 60. Περαιτέρω αύξηση της εκλεκτικότητας αύξησε κυρίως την καθαρότητα του αέριου ρεύματος σε υδρογόνο. Η χρήση εκλεκτικών μεμβρανών ως προς CO2 σε αντιδιαστολή με τις εκλεκτικές μεμβράνες ως προς H2 θα μπορούσε να βελτιώσει την μετατροπή του CO μόνο εάν η περιεκτικότητα του CO2 στην τροφοδοσία ήταν μεγαλύτερη από την αντίστοιχη του υδρογόνου. Τέλος, εξετάστηκε η επίδραση της κινητικής έκφρασης των διαφορετικών μηχανισμών της κινητικής στην απόδοση του αντιδραστήρα μεμβράνης. / The deposition and the characterization of SiO2 membranes on porous substrates of α-Al2O3 and cordierite as well as their performance in Water Gas Shift membrane catalytic reactors have been studied. Colloidal suspensions of silica (SiO2) and hydrous hydroxide of aluminium (γ-AlOOH) were prepared using the sol-gel technique. These suspensions were deposited in the outer, inner or both surfaces of the substrates using the method of dip-coating. The substrates and the deposited membranes were characterized using mercury porosimetry and Scanning Electron Microscopy (SEM). The ability of these membranes to separate mixtures of H2, CO2 and CO was evaluated with gas permeation measurements. Measurements were carried as a function of temperature for mixtures having composition similar to typical feeds of WGS reactors. These experiments provided the values of separation factor and permeation flux of each component through the membranes. Furthermore, a catalytic film of Pt/TiO2 was also deposited on the internal surface of a porous substrate of cordierite. This catalytic film was used as a catalytic membrane reactor for the water gas shift reaction. The results of these experiments were evaluated using a mathematical model that has been developed for this purpose. The model simulated one- dimensional, isothermal catalytic membrane reactor. The effect of the reaction kinetics, membrane permeability and permselectivity on the reaction performance was studied. Its performance was evaluated based on the CO conversion, the H2 recovery as well as the permeate and retentate H2 molar fractions. It is shown that membranes with low permselectivity values (~10) can improve CO conversion. The maximum enhancement has been observed when Da is almost equal to Pe. Even though conversion increased with membrane permselectivity, the most pronounced effect was observed for permselectivity values up to 60. Further increase of permselectivity increased primarily the purity of the H2 rich stream. The utilization of CO2 selective instead of H2 selective membranes could improve CO conversion only if the CO2 content of the feed is higher than that of H2. Finally simulations using rate expressions that correspond to different detailed reaction mechanisms resulted only in slight differences in reactor performance.
28

Optimization of biodiesel production using heterogenous catalyst in a packed bed reactor

Ayodeji, Olagunju Olusegun January 2018 (has links)
Submitted in fulfillment of the requirements for the degree of Master of Engineering: Chemical Engineering, Durban University of Technology, Durban, South Africa, 2018. / Industrial development is associated with an increase in pollution levels and rising fuel prices. Research on clean energy contributes to reduction of fossil fuel dependency, decrease in ozone layer depletion and reduction in emission of toxic gases. The development of renewable energies increases the energy independence and reduces the impact of environmental pollution from fossil fuels. The biodiesel market is among the fastest growing renewable energy markets and its demand in the energy sector has tremendously increased over the last decade due to its environmental friendly qualities. Biodiesel is considered as a promising diesel fuel substitute based on the similarities of its properties with that of petroleum based diesel fuel. However, the high cost of the feedstock, environmental pollution as a result of wastewater generated from a homogeneous process has limited its full implementation. In addition, other technical challenges encountered during the production such as the immiscibility of the reagents and the reversibility of the transesterification reaction calls for innovative technologies to be developed. One promising solution to these issues is the use of membrane technology to serve as a reaction and separating medium for the production of biodiesel. This study is aimed at optimizing biodiesel production from vegetable oils using heterogeneous catalysts in a ceramic membrane. The objectives were to evaluate the performance of calcium oxide (CaO) as a catalyst supported on activated carbon in a membrane reactor for biodiesel production. Further still, to evaluate the membrane performance regarding permeate quality and to optimize the process using design of experiment. The final objective was to investigate the influence of operating parameters such as temperature, methanol/oil ratio, catalyst amount and reaction time on biodiesel yield. The transesterification of soya bean oil with methanol in the presence of a supported catalyst was carried out on a laboratory scale. The membrane reactor was designed and assembled for this purpose. The membrane reactor integrated many procedures such as combining reaction and separation in a single unit, continuous mixing of raw materials and maintaining high mass transfer between the immiscible phases during the reaction. The effect of the process parameters on the biodiesel production and FAME (fatty acid methyl ester) yields were investigated. One factor at a time (OFAT) experiments were conducted to identify the optimum range of the yield. The membrane reactor produced a permeate stream which separated at room temperature into a FAME rich non-polar phase and a methanol polar phase. The optimum range was between 90% - 94% within a reaction time of 60 – 180 minutes, methanol to oil ratio 3:1 - 9:1 and temperature range of 60 0C - 70 0C. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the process. The optimization experiments were conducted around the optimum range established by the OFAT method. The optimum condition for transesterification of soya bean oil to fatty acid methyl ester was obtained at 3 g/L catalyst concentration, 65 0C temperature, 4.5:1 methanol to oil molar ratio and 90 minutes reaction time. At these optimum conditions, the FAME yield was 96.9 %, which is well within the yield of 97.7 % as predicted by the model. In conclusion, this work presents a study of high quality biodiesel production using a ceramic membrane reactor with the advantage of selectively permeating FAME and methanol. This study therefore showed that the use of a membrane for biodiesel production conserved water for other purposes; eliminates the purification step and wastewater generation thereby reducing the cost of biodiesel production. / M
29

The development of an immobilised-enzyme bioprobe for the detection of phenolic pollutants in water

Russell, Ingrid Margaret January 1999 (has links)
The possibility of developing an immobilised-enzyme bioprobe, based on mushroom polyphenol oxidase, for the purely biological detection and quantification of phenolic pollutants in water was investigated. Polyphenol oxidase catalyses the bioconversion of many phenolic compounds into quinone-related coloured products. Thus, in an immobilised form, the enzyme serves as a visible indicator of the presence and concentration of phenolic pollutants in water. The objective of this research was to develop a portable, disposable bioprobe incorporating polyphenol oxidase for this purpose. The intensity of the colour changes produced by the enzyme on reaction with p-cresol, p-chlorophenol and phenol was found to increase proportionally with increasing concentrations of these substrates in solution. Immobilisation of the enzyme on various supports did not appear to significantly affect the catalytic activity of the enzyme. The enzyme was immobilised by adsorption and cross-linking on polyethersulphone, nitrocellulose and nylon membranes with the production of various colour ranges on reaction with the phenolic substrates. The most successful immobilisation of the enzyme, in terms of quantity and distribution of enzyme immobilised and colour production, was obtained with the enzyme immobilised by adsorption on nylon membranes in the presence of 3-methyl-2-benzothiazolinone hydrazone (MBTH). The enzyme, immobilised using this method, produced ranges of maroon colours in phenolic solutions and orange colours in cresylic solutions. The colour intensities produced were found to increase proportionally with increasing substrate concentration after 5 minutes exposure to the substrates. The bioprobe had a broad substrate specificity and was sensitive to substrate concentrations down to 0.05 mg/L. The enzyme activity of the bioprobe was not significantly affected in a pH range from 4 to 10 and in a temperature range from 5-25⁰C. The bioprobe activity was not affected by various concentrations of salt and metal ions and the bioprobe was able to detect and semi-quantify phenolic substrates in industrial effluent samples. These features of the bioprobe indicate that the commercialisation of such a bioprobe is feasible and this technology has been patented (Patent No. SA 97/0227). / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
30

Momentum transfer inside a single fibre capillary membrane bioreactor

Godongwana, Buntu January 2007 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2007. / Innovation in biotechnology research has resulted in a number of fungi being identified for diverse industrial applications. One such fungus, which is the subject of this study and has been one of the most intensively studied, is Phanerochaete chrysosporium. Much research has been done in developing optimized membrane bioreactor systems for the cultivation of these fungi because of their potent industrial applications. This research, however, has been hampered by the lack of a thorough understanding of the kinematics of flow, as well as the dynamics of the flow through these devices. Previous analyses of momentum transfer in membrane bioreactors have been entirely based on horizontally orientated bioreactor systems, and ignored the different modes of operations of membrane bioreactors. These models also ignored the osmotic pressure effects brought about by the retention of solutes on the membrane surface. In this study, analytical and numerical solutions to the Navier-Stokes equations for the description of pressure, velocity, and volumetric flow profiles in a single fibre capillary membrane bioreactor (SFCMBR) were developed. These profiles were developed for the lumen and shell sides of the SFCMBR, taking into account osmotic pressure effects, as well as gel and/or cake formation on the lumen surface of the membrane. The analytical models developed are applicable to horizontal and vertical systems, as well as dead-end, continuous open shell, closed-shell, and shell side crossflow modes.

Page generated in 0.0729 seconds