• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen zum Energiebedarf von Membranbelebungsanlagen /

Krause, Stefan. January 2005 (has links)
Zugl.: Darmstadt, Techn. University, Diss., 2005.
2

Foulingverhalten des Membranbelebungsverfahrens und Auswirkungen auf die Leistungsfähigkeit

Wett, Martin. January 2005 (has links)
Zugl.: Kassel, Universiẗat, Diss.
3

Ein Beitrag zur Entwicklung und Erprobung der organophilen Mikrofiltration für die Prozesstechnik

Mohrdieck, Markus January 2009 (has links)
Zugl.: Saarbrücken, Univ., Diss., 2009
4

Biokatalyse an hydrophoben Substraten mit Tensiden und Membranen als reaktionstechnische Werkzeuge

Orlich, Bernhard. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
5

Modellierung von Membranbioreaktoren für die Abwasserbehandlung unter Berücksichtigung endokrin wirksamer Substanzen /

Wintgens, Thomas. January 2005 (has links)
Techn. Hochsch., Diss., 2005--Aachen.
6

Deckschichtbildung in Kapillarmembranen bei der Querstrom-Mikrofiltration und ihre Beeinflussung durch polymere Flockungsmittel

Nguyen, Minh Tan 04 December 2004 (has links) (PDF)
Die Querstrom-Mikrofiltration mit Kapillarmembranen kommt zunehmend in den Bereichen Lebensmittel-, Pharma-, Chemieindustrie sowie in der Umwelttechnik zum Einsatz. Eine vollständige Beschreibung der Deckschichtbildung innerhalb der Membrananlage ist jedoch noch nicht gelungen. Der erste Teil dieser Arbeit widmet sich der Kuchenbildung in einer Kapillarmembran. Dabei werden sowohl Änderungen der Strömungsverhältnisse entlang der Kapillarlänge als auch Klassiereffekte bei der Querstrom-Mikrofiltration von polydispersen Stoffsystemen berücksichtigt. Die Modellberechnungen wurden mit Experimenten validiert. Weiterhin erfolgte die Untersuchung des Einflusses von polymeren Flockungsmitteln (PFM) auf die Mikrofiltration und der Möglichkeiten einer Filtratstromerhöhung durch Flockung mittels PFM. Es wird gezeigt, dass eine optimale Zudosierung von PFM existiert und diese mit einer maximalen Filtratstromerhöhung verbunden ist. Eine Überdosierung von PFM soll jedoch verhindert werden.
7

Deckschichtbildung in Kapillarmembranen bei der Querstrom-Mikrofiltration und ihre Beeinflussung durch polymere Flockungsmittel

Nguyen, Minh Tan 20 December 2004 (has links)
Die Querstrom-Mikrofiltration mit Kapillarmembranen kommt zunehmend in den Bereichen Lebensmittel-, Pharma-, Chemieindustrie sowie in der Umwelttechnik zum Einsatz. Eine vollständige Beschreibung der Deckschichtbildung innerhalb der Membrananlage ist jedoch noch nicht gelungen. Der erste Teil dieser Arbeit widmet sich der Kuchenbildung in einer Kapillarmembran. Dabei werden sowohl Änderungen der Strömungsverhältnisse entlang der Kapillarlänge als auch Klassiereffekte bei der Querstrom-Mikrofiltration von polydispersen Stoffsystemen berücksichtigt. Die Modellberechnungen wurden mit Experimenten validiert. Weiterhin erfolgte die Untersuchung des Einflusses von polymeren Flockungsmitteln (PFM) auf die Mikrofiltration und der Möglichkeiten einer Filtratstromerhöhung durch Flockung mittels PFM. Es wird gezeigt, dass eine optimale Zudosierung von PFM existiert und diese mit einer maximalen Filtratstromerhöhung verbunden ist. Eine Überdosierung von PFM soll jedoch verhindert werden.
8

Three step modelling approach for the simulation of industrial scale pervaporation modules

Schiffmann, Patrick 21 August 2014 (has links) (PDF)
The separation of aqueous and organic mixtures with thermal separation processes is an important and challenging task in the chemical industry. Rising prices for energy, stricter environmental regulations and the increasing demand for high purity chemicals are the main driving forces to find alternative solutions to common separation technologies such as distillation and absorption. These are mostly too energy consumptive and can show limited separation performance, especially when applied to close boiling or azeotropic mixtures. Pervaporation can overcome these thermodynamic limitations and requires less energy because only the separated components need to be evaporated. This separation technology is already well established for the production of anhydrous solvents, but not yet widely distributed in the chemical and petrochemical industry due to some crucial challenges, which are still to overcome. Besides the need of high selective membranes, the development of membrane modules adapted to the specific requirements of organoselective pervaporation needs more research effort. Furthermore, only few modelling and simulation tools are available, which hinders the distribution of this process in industrial scale. In this work, these issues are addressed in a combined approach. In close collaboration with our cooperation partners, a novel membrane module for organophilic pervaporation is developed. A novel technology to manufacture high selective polymeric pervaporation membranes is applied to produce a membrane for an industrially relevant organic-organic separation task. A three step modelling approach ranging from a shortcut and a discrete to a rigorous model is developed and implemented in a user interface. A hydrophilic and an organophilic membrane are characterised for the separation of a 2-butanol/water mixture in a wide range of feed temperature and feed concentration in order to establish a generally valid description of the membrane performances. This approach is implemented in the three developed models to simulate the novel membrane module in industrial scale. The simulations are compared to the results of pilot scale experiments conducted with the novel membrane module. Good agreement between simulated and experimental values is reached.
9

Three step modelling approach for the simulation of industrial scale pervaporation modules

Schiffmann, Patrick 07 February 2014 (has links)
The separation of aqueous and organic mixtures with thermal separation processes is an important and challenging task in the chemical industry. Rising prices for energy, stricter environmental regulations and the increasing demand for high purity chemicals are the main driving forces to find alternative solutions to common separation technologies such as distillation and absorption. These are mostly too energy consumptive and can show limited separation performance, especially when applied to close boiling or azeotropic mixtures. Pervaporation can overcome these thermodynamic limitations and requires less energy because only the separated components need to be evaporated. This separation technology is already well established for the production of anhydrous solvents, but not yet widely distributed in the chemical and petrochemical industry due to some crucial challenges, which are still to overcome. Besides the need of high selective membranes, the development of membrane modules adapted to the specific requirements of organoselective pervaporation needs more research effort. Furthermore, only few modelling and simulation tools are available, which hinders the distribution of this process in industrial scale. In this work, these issues are addressed in a combined approach. In close collaboration with our cooperation partners, a novel membrane module for organophilic pervaporation is developed. A novel technology to manufacture high selective polymeric pervaporation membranes is applied to produce a membrane for an industrially relevant organic-organic separation task. A three step modelling approach ranging from a shortcut and a discrete to a rigorous model is developed and implemented in a user interface. A hydrophilic and an organophilic membrane are characterised for the separation of a 2-butanol/water mixture in a wide range of feed temperature and feed concentration in order to establish a generally valid description of the membrane performances. This approach is implemented in the three developed models to simulate the novel membrane module in industrial scale. The simulations are compared to the results of pilot scale experiments conducted with the novel membrane module. Good agreement between simulated and experimental values is reached.

Page generated in 0.083 seconds