Spelling suggestions: "subject:"memetic algorithm"" "subject:"emetic algorithm""
11 |
Seleção de características para reconhecimento biométrico baseado em sinais de eletrocardiograma / Feature selection for biometric recognition based on electrocardiogram signalsTeodoro, Felipe Gustavo Silva 22 June 2016 (has links)
O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de vários aspectos físicos e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressões digitais, íris, face e voz. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação de sistemas biométricos em mundo real é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança que esta tecnologia pode oferecer. Recentemente, sinais biomédicos, como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido estudados para uso em problemas envolvendo reconhecimento biométrico. A formação do sinal do ECG é uma função da anatomia estrutural e funcional do coração e dos seus tecidos circundantes. Portanto, o ECG de um indivíduo exibe padrão cardíaco único e não pode ser facilmente forjado ou duplicado, o que tem motivado a sua utilização em sistemas de identificação. Entretanto, a quantidade de características que podem ser extraídas destes sinais é muito grande. A seleção de característica tem se tornado o foco de muitas pesquisas em áreas em que bases de dados formadas por dezenas ou centenas de milhares de características estão disponíveis. Seleção de característica ajuda na compreensão dos dados, reduzindo o custo computacional, reduzindo o efeito da maldição da dimensionalidade e melhorando o desempenho do preditor. O foco da seleção de característica é selecionar um subconjunto de característica a partir dos dados de entrada, que pode descrever de forma eficiente os dados de entrada ao mesmo tempo reduzir os efeitos de ruídos ou características irrelevantes e ainda proporcionar bons resultados de predição. O objetivo desta dissertação é analisar o impacto de algumas técnicas de seleção de característica tais como, Busca Gulosa, Seleção \\textit, Algoritmo Genético, Algoritmo Memético, Otimização por Enxame de Partículas sobre o desempenho alcançado pelos sistemas biométricos baseado em ECG. Os classificadores utilizados foram $k$-Vizinhos mais Próximos, Máquinas de Vetores Suporte, Floresta de Caminhos Ótimos e classificador baseado em distância mínima. Os resultados demonstram que existe um subconjunto de características extraídas do sinal de ECG capaz de fornecer altas taxas de reconhecimento / The field of biometrics includes a variety of technologies used to identify and verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric modalities have been proposed for recognition of people, such as fingerprints, iris, face and speech. These biometric modalities have distinct characteristics in terms of performance, measurability and acceptability. One issue to be considered with the application of biometric systems in real world is its robustness to attacks by circumvention, spoof and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Recently, biomedical signals, as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been studied for use in problems involving biometric recognition. The ECG signal formation is a function of structural and functional anatomy of the heart and its surrounding tissues. Therefore, the ECG of an individual exhibits unique cardiac pattern and cannot be easily forged or duplicated, that have motivated its use in various identification systems. However, the amount of features that can be extracted from this signal is very large. The feature selection has become the focus of much research in areas where databases formed by tens or hundreds of thousands of features are available. Feature Selection helps in understanding data, reducing computation requirement, reducing the effect of curse of dimensionality and improving the predictor performance. The focus of feature selection is to select a subset of features from the input which can efficiently describe the input data while reducing effects from noise or irrelevant features and still provide good prediction results. The aim of this dissertation is to analyze the impact of some feature selection techniques, such as, greedy search, Backward Selection, Genetic Algorithm, Memetic Algorithm, Particle Swarm Optimization on the performance achieved by biometric systems based on ECG. The classifiers used were $k$-Nearest Neighbors, Support Vector Machines, Optimum-Path Forest and minimum distance classifier. The results demonstrate that there is a subset of features extracted from the ECG signal capable of providing high recognition rates
|
12 |
Modelo hipermídia para geração de layouts de interfaces de aplicaçõesNesi, Luan Carlos 27 March 2014 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-03-23T14:28:22Z
No. of bitstreams: 1
Luan Carlos Nesi.pdf: 100100607 bytes, checksum: 6012e0f177d7b8f3807de72ff7d98315 (MD5) / Made available in DSpace on 2015-03-23T14:28:22Z (GMT). No. of bitstreams: 1
Luan Carlos Nesi.pdf: 100100607 bytes, checksum: 6012e0f177d7b8f3807de72ff7d98315 (MD5)
Previous issue date: 2014-03-27 / Milton Valente / Nesse trabalho foi desenvolvido um modelo computacional de Hipermídia Adaptativa para geração de layouts de interface de aplicações. A pesquisa partiu de uma revisão sobre Hipermídia Adaptativa, com um apanhado sobre os conceitos e características dos métodos e técnicas de adaptação a fim de embasar seu desenvolvimento. Após, avaliou-se o uso das metaheurísticas Algoritmo Genético, Busca Tabu e Algoritmo Memético como as ferramentas de apoio no desenvolvimento do modelo. Na sequência, as Redes de Autômatos Estocásticos nortearam a modelagem do formalismo utilizado para a retenção de conhecimento. Dessas bases, foi desenvolvida a prova de conceito. Conseguinte, apresentam-se os experimentos realizados para validação. Os resultados obtidos pelo modelo foram de boa qualidade, indo ao encontro dos objetivos da pesquisa. Como decorrência deste trabalho, obteve-se um sistema capaz de gerar layouts, contemplando as características dos usuários e seus dispositivos, sendo capaz de acompanhar uma tendência de consumo de conteúdos não só mercadológica, mas também, social. / In this paper was developed a computational model of Adaptive Hypermedia for generation of interface layouts of applications. The research began with a review of Adaptive Hypermedia, with an overview of the concepts and characteristics of the methods and adaptation techniques in order to base its development. After, we evaluated the use of metaheuristic Genetic Algorithm, Tabu Search, and Memetic Algorithm as support tools in the development of the model. Following, the Stochastic Automata Networks guided the modeling of the formalism used for knowledge retention. These bases, the proof of concept were developed. Therefore, we present the experiments to validate. The obtained results by the model were of good quality, meeting the research objectives. As results of this work, we obtained a system capable to generate layouts, considering the characteristics of the users and their devices, being able to follow a trend of content consumption not only marketing, but also social.
|
13 |
Um modelo de otimização baseado em algoritmo memético para o escalonamento de ordens de produção utilizando divisão de lotes de tamanho variávelSilva, Leandro Mengue da 23 March 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-06-16T12:13:46Z
No. of bitstreams: 2
Leandro Mengue da Silva_.pdf: 1918963 bytes, checksum: 8d329d578b6f3672b670f65fd2f7ea08 (MD5)
Leandro Mengue da Silva_.pdf: 1918963 bytes, checksum: 8d329d578b6f3672b670f65fd2f7ea08 (MD5) / Made available in DSpace on 2017-06-16T12:13:47Z (GMT). No. of bitstreams: 2
Leandro Mengue da Silva_.pdf: 1918963 bytes, checksum: 8d329d578b6f3672b670f65fd2f7ea08 (MD5)
Leandro Mengue da Silva_.pdf: 1918963 bytes, checksum: 8d329d578b6f3672b670f65fd2f7ea08 (MD5)
Previous issue date: 2017-03-23 / CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico / A contribuição de metaheurísticas, em especial a dos algoritmos evolutivos, na área de otimização combinatória é de extrema relevância, pois auxiliam na busca de soluções próximas ao ótimo para problemas complexos da vida real cuja resolução em tempo aceitável é inviável devido a sua complexidade computacional, oferecendo uma flexibilidade importante na modelagem do problema. Este trabalho se propõe a apresentar e implementar um modelo computacional a ser utilizado na otimização do escalonamento de ordens de produção utilizando um Algoritmo Memético (AM), que permite a busca tanto da melhor sequência das ordens de produção quanto dos lotes de tamanho variável em que a quantidade de cada operação pode ser subdividida. A possibilidade de utilização de máquinas alternativas, de recursos secundários, de intervalos de indisponibilidade e de lotes de transferência, é apresentada no modelo, o que lhe proporciona grande robustez e aplicabilidade em ambientes de manufatura flexível, permitindo uma modelagem do Flexible Job Shop Scheduling Problem (FJSSP) que reflete com maior fidedignidade a realidade do ambiente fabril, gerando como resultado um escalonamento otimizado e aderente às necessidades da fábrica. Várias instâncias do FJSSP são utilizadas nos testes e os resultados obtidos comprovam que o algoritmo proposto consegue otimizar o escalonamento das ordens de produção de cada instância de maneira eficiente. / The contribution of meta-heuristics, especially evolutionary algorithms, in combinatorial optimization area is extremely important, as they help in finding near optimal solutions to complex real-life problems whose resolution is infeasible in acceptable time due to its computational complexity, offering an important flexibility in the modeling of problem. This study propose to present and implement a computational model to be used in optimizing the production scheduling of manufacturing orders using a Memetic Algorithm that allows to search both the best sequence of jobs as of variable size batches that the quantity of each operation can be subdivided. The possibility of using alternative resources, operations with secondary resources, unavailability intervals and batch transfer lots are features presented in the model, which lends it great robustness and applicability to flexible manufacturing environments, allowing the modeling of Flexible Job Shop Scheduling Problem (FJSSP) that reflects with higher accuracy the real manufacturing environment, generating optimized scheduling results that are adhering to the plant needs. Multiple instances of FJSSP are used in the tests and the results show that the proposed algorithm succeeds in optimizing the scheduling of production orders for each instance so efficient.
|
14 |
Estratégias de otimização de trajetos e alocação de torres em projetos de linhas de transmissão aéreas / Strategies for path and towers allocation optimization in overhead power lines projectsPóvoa, Caio José Fernandes 22 March 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-04-04T11:42:16Z
No. of bitstreams: 2
Dissertação - Caio José Fernandes Póvoa - 2018.pdf: 6079271 bytes, checksum: 5efa21665d3c5f3bf6b4a58652fff6b4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-04-04T13:23:10Z (GMT) No. of bitstreams: 2
Dissertação - Caio José Fernandes Póvoa - 2018.pdf: 6079271 bytes, checksum: 5efa21665d3c5f3bf6b4a58652fff6b4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-04T13:23:10Z (GMT). No. of bitstreams: 2
Dissertação - Caio José Fernandes Póvoa - 2018.pdf: 6079271 bytes, checksum: 5efa21665d3c5f3bf6b4a58652fff6b4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-22 / This dissertation of master degree describes methods of optimizing routes and allocating towers
of overhead power lines, with the objective of meeting technical, structural and constructive
constraints, and reducing financial costs. The generated solutions are graphically presented
through the transmission line profile and its 3-dimension representation upon the elevation map of
the area. For the projects evaluation, elements of structural analysis are used, highlighting the
Matrix Structural Analysis for the study of efforts and deformations in the towers and their
components. Three methods are proposed, each one using different approaches. First, it will be
shown an optimization algorithm based on Evolutionary Computation, characterized by the
application of natural selection on individuals generated from mutations and genetic crossover.
The second algorithm was inspired by the well-known Nelder-Mead optimization method. The
triangular transformations addressed in the original method were adapted and physically
implemented to transmission lines. The last optimization algorithm presented is a hybridization of
the two previous methods. Finally, a performance comparison of the algorithms, in which each
one of them will be applied to three different cases, will be carried out in order to validate them. / Esta dissertação de mestrado descreve métodos de otimização de trajetos e alocação de torres de
linhas aéreas de transmissão de energia elétrica, com o objetivo de obedecer a restrições técnicas,
estruturais e construtivas, e de reduzir custos financeiros. As soluções encontradas são
apresentadas graficamente a partir da plotagem do perfil da linha de transmissão, e da sua
representação em três dimensões sobre o mapa de relevo da região. Para a avaliação dos projetos,
utilizam-se elementos de análise estrutural, destacando-se a Análise Estrutural Matricial para o
estudo dos esforços e deformações nas torres e seus componentes. São propostos três métodos que
utilizam abordagens diferentes. Primeiramente, será considerado um algoritmo de otimização
baseado na Computação Evolucionária, caracterizando-se pela aplicação da seleção natural ao
longo de gerações, em indivíduos gerados a partir de mutações e recombinações. O segundo
algoritmo apresentado é inspirado no consagrado método de Nelder-Mead, sendo as
transformações triangulares, por ele apresentadas, adaptadas e implementadas fisicamente a linhas
de transmissão. O último método de otimização é uma hibridação dos dois métodos anteriores. Por
fim, será feita uma comparação de desempenho dos algoritmos apresentados, a partir da aplicação
de cada um deles a três estudos de caso distintos para validá-los.
|
15 |
Seleção de características para reconhecimento biométrico baseado em sinais de eletrocardiograma / Feature selection for biometric recognition based on electrocardiogram signalsFelipe Gustavo Silva Teodoro 22 June 2016 (has links)
O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de vários aspectos físicos e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressões digitais, íris, face e voz. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação de sistemas biométricos em mundo real é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança que esta tecnologia pode oferecer. Recentemente, sinais biomédicos, como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido estudados para uso em problemas envolvendo reconhecimento biométrico. A formação do sinal do ECG é uma função da anatomia estrutural e funcional do coração e dos seus tecidos circundantes. Portanto, o ECG de um indivíduo exibe padrão cardíaco único e não pode ser facilmente forjado ou duplicado, o que tem motivado a sua utilização em sistemas de identificação. Entretanto, a quantidade de características que podem ser extraídas destes sinais é muito grande. A seleção de característica tem se tornado o foco de muitas pesquisas em áreas em que bases de dados formadas por dezenas ou centenas de milhares de características estão disponíveis. Seleção de característica ajuda na compreensão dos dados, reduzindo o custo computacional, reduzindo o efeito da maldição da dimensionalidade e melhorando o desempenho do preditor. O foco da seleção de característica é selecionar um subconjunto de característica a partir dos dados de entrada, que pode descrever de forma eficiente os dados de entrada ao mesmo tempo reduzir os efeitos de ruídos ou características irrelevantes e ainda proporcionar bons resultados de predição. O objetivo desta dissertação é analisar o impacto de algumas técnicas de seleção de característica tais como, Busca Gulosa, Seleção \\textit, Algoritmo Genético, Algoritmo Memético, Otimização por Enxame de Partículas sobre o desempenho alcançado pelos sistemas biométricos baseado em ECG. Os classificadores utilizados foram $k$-Vizinhos mais Próximos, Máquinas de Vetores Suporte, Floresta de Caminhos Ótimos e classificador baseado em distância mínima. Os resultados demonstram que existe um subconjunto de características extraídas do sinal de ECG capaz de fornecer altas taxas de reconhecimento / The field of biometrics includes a variety of technologies used to identify and verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric modalities have been proposed for recognition of people, such as fingerprints, iris, face and speech. These biometric modalities have distinct characteristics in terms of performance, measurability and acceptability. One issue to be considered with the application of biometric systems in real world is its robustness to attacks by circumvention, spoof and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Recently, biomedical signals, as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been studied for use in problems involving biometric recognition. The ECG signal formation is a function of structural and functional anatomy of the heart and its surrounding tissues. Therefore, the ECG of an individual exhibits unique cardiac pattern and cannot be easily forged or duplicated, that have motivated its use in various identification systems. However, the amount of features that can be extracted from this signal is very large. The feature selection has become the focus of much research in areas where databases formed by tens or hundreds of thousands of features are available. Feature Selection helps in understanding data, reducing computation requirement, reducing the effect of curse of dimensionality and improving the predictor performance. The focus of feature selection is to select a subset of features from the input which can efficiently describe the input data while reducing effects from noise or irrelevant features and still provide good prediction results. The aim of this dissertation is to analyze the impact of some feature selection techniques, such as, greedy search, Backward Selection, Genetic Algorithm, Memetic Algorithm, Particle Swarm Optimization on the performance achieved by biometric systems based on ECG. The classifiers used were $k$-Nearest Neighbors, Support Vector Machines, Optimum-Path Forest and minimum distance classifier. The results demonstrate that there is a subset of features extracted from the ECG signal capable of providing high recognition rates
|
16 |
Optimization of the car relocation operations in one-way carsharing systems / Optimisation des opérations du redéploiement de véhicules dans un système d'autopartage à sens uniqueZakaria, Rabih 14 December 2015 (has links)
L'autopartage est un service de mobilité qui offre les mêmes avantages que les voitures particulières mais sansnotion de propriété. Les clients du système peuvent accéder aux véhicules sans ou avec réservation préalable. Laflotte de voitures est distribuée entre les stations et les clients peuvent prendre une voiture d'une station et ladéposer dans n'importe quelle autre station (one-way), chaque station disposant d'un nombre maximum de placesde stationnement. La demande pour la prise ou le retour des voitures dans chaque station est souvent asymétriqueentre les stations et varie au cours de la journée. Par conséquent, certaines stations accumulent des voitures etatteignent leur capacité maximale prévenant alors de nouvelles voitures de trouver une place de stationnement.Dans le même temps, des stations se vident et conduisent au rejet de la demande de retrait de clients. Notre travailporte sur l'optimisation des opérations de redéploiement de voitures afin de redistribuer efficacement les voitures surles stations suivant la demande qui varie en fonction du temps et de l'espace. Dans les systèmes d'autopartage àsens unique, le problème du redéploiement de voitures sur les stations est techniquement plus difficile que leproblème de la redistribution des vélos dans les systèmes de vélopartage. Dans ce dernier, on peut utiliser uncamion pour déplacer plusieurs vélos en même temps, alors que nous ne pouvons pas le faire dans le systèmeautopartage en raison de la taille des voitures et de la difficulté de chargement et de déchargement. Ces opérationsaugmentent le coût de fonctionnement du système d'autopartage sur l'opérateur. De ce fait, l'optimisation de cesopérations est essentielle afin de réduire leur coût. Dans cette thèse, nous développons un modèle deprogrammation linéaire en nombre entier pour ce problème. Ensuite, nous présentons trois politiques différentes deredéploiement de voitures que nous mettons en oeuvre dans des algorithmes de recherche gloutonne et nousmontrons que les opérations de redéploiement qui ne considèrent pas les futures demandes ne sont pas efficacesdans la réduction du nombre de demandes rejetées. Les solutions fournies par notre algorithme glouton sontperformantes en temps d'exécution (moins d'une seconde) et en qualité en comparaison avec les solutions fourniespar CPLEX. L'évaluation de la robustesse des deux approches présentées par l'ajout d'un bruit stochastique sur lesdonnées d'entrée montre qu'elles sont très dépendantes des données même avec l'adoption de valeur de seuil deredéploiement. En parallèle à ce travail algorithmique, l'analyse de variance (ANOVA) et des méthodes derégression multilinéaires ont été appliqués sur l'ensemble de données utilisées pour construire un modèle global afind'estimer le nombre de demandes rejetées. Enfin, nous avons développé et comparé deux algorithmesévolutionnaires multicritères pour prendre en compte l'indécision sur les objectifs de l'optimisation, NSGA-II et unalgorithme mémétique qui a montré une bonne performance pour résoudre ce problème. / To buy it. Users can have access to vehicles on the go with or without reservation. Each station has a maximumnumber of parking places. In one-way carsharing system, users can pick up a car from a station and drop it in anyother station. The number of available cars in each station will vary based on the departure and the arrival of cars oneach station at each time of the day. The demand for taking or returning cars in each station is often asymmetric andis fluctuating during the day. Therefore, some stations will accumulate cars and will reach their maximum capacitypreventing new arriving cars from finding a parking place, while other stations will become empty which lead to therejection of new users demand to take a car. Users expect that cars are always available in stations when they needit, and they expect to find a free parking place at the destination station when they want to return the rented car aswell. However, maintaining this level of service is not an easy task. For this sake, carsharing operators recruitemployees to relocate cars between the stations in order to satisfy the users' demands.Our work concerns the optimization of the car relocation operations in order to efficiently redistribute the cars overthe stations with regard to user demands, which are time and space dependent. In one-way carsharing systems, therelocation problem is technically more difficult than the relocation problem in bikesharing systems. In the latter, wecan use trucks to move several bikes at the same time, while we cannot do this in carsharing system because of thesize of cars and the difficulty of loading and unloading cars. These operations increase the cost of operating thecarsharing system.As a result, optimizing these operations is crucial in order to reduce the cost of the operator. In this thesis, we modelthis problem as an Integer Linear Programming model. Then we present three different car relocation policies thatwe implement in a greedy search algorithm. The comparison between the three policies shows that car relocationoperations that do not consider future demands are not effective in reducing the number of rejected demands.Results prove that solutions provided by our greedy algorithm when using a good policy, are competitive withCPLEX solutions. Furthermore, adding stochastic modification on the input data proves that the robustness of thetwo presented approaches to solve the relocation problem is highly dependent on the input demand even afteradding threshold values constraints. After that, the analysis of variance (ANOVA) and the multi-linear regressionmethods were applied on the used dataset in order to build a global model to estimate the number of rejecteddemands. Finally, we developed and compared two multi-objectives evolutionary algorithms to deal with thedecisional aspect of the car relocation problem using NSGA-II and memetic algorithms.
|
17 |
Nouveaux développements en histologie spectrale IR : application au tissu colique / New developments in IR spectral histology : application to colon tissueNguyen, Thi Nguyet Que 27 January 2016 (has links)
Les développements continus en micro-spectroscopie vibrationnelle IR et en analyse numérique de données multidimensionnelles ont permis récemment l'émergence de l'histologie spectrale. A l'échelle tissulaire et sur une base biomoléculaire, cette nouvelle approche représente un outil prometteur pour une meilleure analyse et caractérisation de différents états physiopathologiques, et potentiellement une aide au diagnostic clinique. Dans ce travail, en utilisant un modèle tissulaire de côlon normal chez la Souris et chez l’Homme, nous avons apporté des améliorations à la chaîne de traitements des données afin d'automatiser et d'optimiser cette histologie spectrale.En effet, dans un premier temps, le développement d’une double application hiérarchique d'indices de validité a permis de déterminer le nombre optimal de classes nécessaire à une caractérisation complète des structures histologiques. Dans un second temps, cette méthode a été généralisée à l'échelle interindividuelle par couplage d'un prétraitement par EMSC (Extended Multiplicative Signal Correction) et d'une classification non-supervisée k-Means; ce couplage étant appliqué conjointement à toutes les images spectrales IR. Enfin, compte tenu de l'essor des métaheuristiques et de leur capacité à résoudre des problèmes complexes d'optimisation numérique, nous avons transposé un algorithme mémétique aux données spectrales IR. Ce nouvel algorithme se compose d'un algorithme génétique et d'un raffinement par classification non-supervisée k-Means. Comparé aux méthodes classiques de clustering, cet algorithme mémétique appliqué aux images spectrales IR, a permis de réaliser une classification non-supervisée optimale et indépendante de l'initialisation. / Recent developments in IR vibrational microspectroscopy and numerical multidimensional analysis have led to the emergence of spectral histology. At the tissue level, this new approach represents an attractive tool for a better analysis and characterization of pathophysiological states and for diagnostic challenges. Here, using normal murine and human colon tissues, data processing steps have been improved for automating and optimizing this spectral histology. First, the development of a hierarchical double application of validity indices permitted to determine the optimal number of clusters that correctly identified the different colon histological components. Second, this method has been improved to perform spectral histology at the inter-individual level. For this, EMSC (Extended Multiplicative Signal Correction) preprocessing has been successfully combined to k-Means clustering. Finally, given the ability of metaheuristics to solve complex optimization problems, a memetic algorithm has been developed for IR spectral data clustering. This algorithm is composed of a genetic algorithm and a k-Means clustering refinement. Compared with conventional clustering methods, our memetic algorithm allowed to generate an optimal and initialization-independent clustering.
|
18 |
Design of a selective parallel heuristic algorithm for the vehicle routing problem on an adaptive object modelMoolman, A.J. (Alwyn Jakobus) 19 November 2010 (has links)
The Vehicle Routing Problem has been around for more than 50 years and has been of major interest to the operations research community. The VRP pose a complex problem with major benefits for the industry. In every supply chain transportation occurs between customers and suppliers. In this thesis, we analyze the use of a multiple pheromone trial in using Ant Systems to solve the VRP. The goal is to find a reasonable solution for data environments of derivatives of the basic VRP. An adaptive object model approach is followed to allow for additional constraints and customizable cost functions. A parallel method is used to improve speed and traversing the solution space. The Ant System is applied to the local search operations as well as the data objects. The Tabu Search method is used in the local search part of the solution. The study succeeds in allowing for all of the key performance indicators, i.e. efficiency, effectiveness, alignment, agility and integration for an IT system, where the traditional research on a VRP algorithm only focuses on the first two. / Thesis (PhD)--University of Pretoria, 2010. / Industrial and Systems Engineering / unrestricted
|
19 |
Mathematical models and methods based on metaheuristic approach for timetabling problem / Les modèles mathématiques et des méthodes fondées sur l'approche métaheuristique pour résoudre les problèmes d'établissement des horairesAhmad, Maqsood 15 November 2013 (has links)
Résumé indisponible. / In this thesis we have concerned ourselves with university timetabling problems both course timetabling and examination timetabling problems. Most of the timetabling problems are computationally NP-complete problems, which means that the amount of computation required to find solutions increases exponentially with problem size. These are idiosyncratic nature problems, for example different universities have their own set of constraints, their own definition of good timetable, feasible timetable and their own choice about the use of constraint type (as a soft or hard constraint). Unfortunately, it is often the case that a problem solving approach which is successfully applied for one specific problem may not become suitable for others. This is a motivation, we propose a generalized problem which covers many constraints used in different universities or never used in literature. Many university timetabling problems are sub problems of this generalized problem. Our proposed algorithms can solve these sub problems easily, moreover constraints can be used according to the desire of user easily because these constraints can be used as reference to penalty attached with them as well. It means that give more penalty value to hard constraints than soft constraint. Thus more penalty value constraints are dealt as a hard constraint by algorithm. Our algorithms can also solve a problem in two phases with little modification, where in first phase hard constraints are solved. In this work we have preferred and used two phase technique to solve timetabling problems because by using this approach algorithms have broader search space in first phase to satisfy hard constraints while not considering soft constraints at all. Two types of algorithms are used in literature to solve university timetabling problem, exact algorithms and approximation algorithms. Exact algorithms are able to find optimal solution, however in university timetabling problems exact algorithms constitute brute-force style procedures. And because these problems have the exponential growth rates of the search spaces, thus these kinds of algorithms can be applied for small size problems. On the other side, approximation algorithms may construct optimal solution or not but they can produce good practically useable solutions. Thus due to these factors we have proposed approximation algorithms to solve university timetabling problem. We have proposed metaheuristic based techniques to solve timetabling problem, thus we have mostly discussed metaheuristic based algorithms such as evolutionary algorithms, simulated annealing, tabu search, ant colony optimization and honey bee algorithms. These algorithms have been used to solve many other combinatorial optimization problems other than timetabling problem by modifying a general purpose algorithmic framework. We also have presented a bibliography of linear integer programming techniques used to solve timetabling problem because we have formulated linear integer programming formulations for our course and examination timetabling problems. We have proposed two stage algorithms where hard constraints are satisfied in first phase and soft constraints in second phase. The main purpose to use this two stage technique is that in first phase hard constraints satisfaction can use more relax search space because in first phase it does not consider soft constraints. In second phase it tries to satisfy soft constraints when maintaining hard constraints satisfaction which are already done in first phase. (...)
|
20 |
Desenvolvimento de um protótipo de software para geração de grade de programação de comerciais aplicável à TV Digital/IPTV utilizando MetaheurísticasBrum, James Gladstone Fagundes 15 May 2014 (has links)
Submitted by Fabricia Fialho Reginato (fabriciar) on 2015-07-28T22:46:54Z
No. of bitstreams: 1
JamesBrum.pdf: 2178179 bytes, checksum: 22c4d2e31ff012df7823bad3151fc4de (MD5) / Made available in DSpace on 2015-07-28T22:46:54Z (GMT). No. of bitstreams: 1
JamesBrum.pdf: 2178179 bytes, checksum: 22c4d2e31ff012df7823bad3151fc4de (MD5)
Previous issue date: 2014 / PROCERGS – Cia de Processamento Dados do Estado Rio Grande Sul / Este trabalho apresenta o desenvolvimento de um protótipo de software, utilizando metaheurísticas por meio de um Algoritmo Memético, para a Geração de Grade de Programação de intervenções comerciais aplicada à TV Digital e a IPTV. O problema apresenta-se como uma linha de tempo na grade televisiva com sua programação onde estão definidos horários de intervenção em que grupos de comerciais devem ser exibidos. A organização destes comerciais nas intervenções obedecem a um conjunto de requisitos que devem ser otimizados como: a taxa de retorno, adequação ao público alvo, e utilização da largura de banda do servidor e também de restrições como: a classificação indicativa, número de exibições do comercial e adequação à programação. Neste contexto são considerados os problemas de Seleção de Partes e de Timetabling para a elaboração do protótipo, abordando sua solução com a utilização de um Algoritmo Memético, desenvolvido aplicando as metaheurísticas de Algoritmos Genéticos e de Busca Tabu. O resultado obtido foi a geração de uma ferramenta computacional que viabilizou o gerenciamento da inserção de comerciais nas grades de programação, através da obtenção de soluções de boa qualidade. / This paper shows the development of a software prototype using metaheuristics via a memetic algorithm to generation of the Grid Programming of ads interventions applied to Digital TV and IPTV. This problem is presented as a timeline in a TV programing with intervals of interventions where ads groups should be displayed. The organization of these interventions ads groups follow a set of requirements that must be optimized as: the rate of return, appropriateness to the target audience, and use of the bandwidth of the server, and also restrictions like: parental rating, number of views of each ad, time box of the intervention and fitness programming. In this context are considered the problems of Selection Parties and Timetabling for build the prototype and approach the solution using a memetic algorithm developed by applying the metaheuristic Genetic Algorithms and Tabu Search. The resulted was the generation of a computational tool that allows the insertion of ads management in grids programming, by obtaining good quality solutins.
|
Page generated in 0.0582 seconds