• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emulating Variable Block Size Caches

Muthulaxmi, S 05 1900 (has links) (PDF)
No description available.
2

Design of heterogeneous coherence hierarchies using manager-client pairing

Beu, Jesse Garrett 09 April 2013 (has links)
Over the past ten years, the architecture community has witnessed the end of single-threaded performance scaling and a subsequent shift in focus toward multicore and manycore processing. While this is an exciting time for architects, with many new opportunities and design spaces to explore, this brings with it some new challenges. One area that is especially impacted is the memory subsystem. Specifically, the design, verification, and evaluation of cache coherence protocols becomes very challenging as cores become more numerous and more diverse. This dissertation examines these issues and presents Manager-Client Pairing as a solution to the challenges facing next-generation coherence protocol design. By defining a standardized coherence communication interface and permissions checking algorithm, Manager-Client Pairing enables coherence hierarchies to be constructed and evaluated quickly without the high design-cost previously associated with hierarchical composition. Further, Manager-Client Pairing also allows for verification composition, even in the presence of protocol heterogeneity. As a result, this rapid development of diverse protocols is ensured to be bug-free, enabling architects to focus on performance optimization, rather than debugging and correctness concerns, while comparing diverse coherence configurations for use in future heterogeneous systems.

Page generated in 0.0895 seconds