• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 33
  • 22
  • 12
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 278
  • 69
  • 69
  • 54
  • 38
  • 37
  • 36
  • 35
  • 34
  • 32
  • 28
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Instrumented Nanoindentation Studies Of Deformation In Shape Memory Alloys

Rajagopalan, Sudhir 01 January 2005 (has links)
Near equi-atomic nickel titanium (NiTi) shape memory alloys (SMAs) are a class of materials characterized by their unique deformation behavior. In these alloys, deformation mechanisms such as mechanical twinning and stress induced phase transformation between a high symmetry phase (austenite) and a low symmetry phase (martensite) additionally occur and influence mechanical behavior and thus their functionality. Consequently, applications of SMAs usually call for precise phase transformation temperatures, which depend on the thermomechanical history and the composition of the alloy. Instrumented indentation, inherently a mechanical characterization technique for small sampling volumes, offers a cost effective means of empirically testing SMAs in the form of centimeter scaled buttons prior to large-scale production. Additionally, it is an effective probe for intricate SMA geometries (e.g., in medical stents, valves etc.), not immediately amenable to conventional mechanical testing. The objective of this work was to study the deformation behavior of NiTi SMAs using instrumented indentation. This involved devising compliance calibration techniques to account for instrument deformation and designing spherical diamond indenters. Substantial quantitative information related to the deformation behavior of the shape memory and superelastic NiTi was obtained for the first time, as opposed to existing qualitative indentation studies. For the case of shape memory NiTi, the elastic modulus of the B19' martensite prior to twinning was determined using spherical indentation to be about 101 GPa, which was comparable to the value from neutron diffraction and was substantially higher than typical values reported from extensometry (68 GPa in this case). Twinning at low stresses was observed from neutron diffraction measurements and was attributed to reducing the elastic modulus estimated by extensometry. The onset of predominantly elastic deformation of the twinned martensite was identified from the nanoindentation response and the elastic modulus of the twinned martensite was estimated to be about 17 GPa. Finite element modeling was used to validate the measurements. For the case of the superelastic NiTi, the elastic modulus of the parent austenite was estimated to be about 62 GPa. The onset of large-scale stress induced martensite transformation and its subsequent elastic deformation were identified from the nanoindentation response. The effect of cycling on the mechanical behavior of the NiTi specimen was studied by repeatedly indenting at the same location. An increase in the elastic modulus value for the austenite and a decrease in the associated hysteresis and residual depth after the initial few cycles followed by stabilization were observed. As for the case of shape memory NiTi, finite element modeling was used to validate the measurements. This work has initiated a methodology for the quantitative evaluation of shape memory and superelastic NiTi alloys with instrumented spherical indentation. The aforementioned results have immediate implications for optimizing thermomechanical processing parameters in prototype button melts and for the mechanical characterization of intricate SMA geometries (e.g., in medical stents, valves etc.) This work was made possible by grants from NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF.
82

Modeling the Coupling Between Martensitic Phase Transformation and Plasticity in Shape Memory Alloys

Manchiraju, Sivom 07 January 2011 (has links)
No description available.
83

Developing an active ankle foot orthosis based on shape memory alloys

Tarkesh Esfahani, Ehsan January 2007 (has links)
No description available.
84

Commissioning of an instrumented nanoindenter for studies of deformation in shape memory alloys

Rajagopalan, Sudhir 01 July 2003 (has links)
No description available.
85

An in situ synchrotron X-ray diffraction study of stress-induced transformations in NiTi

Rathod, Chandrasen 01 April 2003 (has links)
No description available.
86

Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys

Ley, Nathan A 05 1900 (has links)
Shape memory alloys (SMAs) represent a revolutionary class of active materials that can spontaneously generate strain based on an environmental input, such as temperature or stress. SMAs can provide potential solutions to many of today's engineering problems due to their compact form, high energy densities, and multifunctional capabilities. While many applications in the biomedical, aerospace, automotive, and defense industries have already been investigated and realized for nickel-titanium (NiTi) based SMAs, the effects of controlling and designing the microstructure through processing (i.e. extreme cold working) have not been well understood. Current Ni-Ti based SMAs could be improved upon by increasing their work output, improving dimensional stability, preventing accidental actuation, and reducing strain localization. Additionally, there is a strong need to increase the transformation temperature above 115 °C, the current limit for NiTi and is especially important for aerospace applications. Previous research has shown that the addition on ternary elements such as Au, Hf, Pd, Pt, and Zr to NiTi can greatly increase these transformation temperatures. However, there are several limiting factors with these ternary additions such as increased cost, especially with Au, Pd, and Pt, as well as, difficulty in conventionally processing these alloys. Therefore, the main objectives of this research is to study how processing can alter the mechanical properties of NiTi and characterizing it using in situ synchrotron radiation x-ray diffraction (SR-XRD), understanding how we can process ternary SMAs (NiTiHf) by conventional means, and lastly how this processing alters precipitation characteristics and mechanical properties of these alloy systems.
87

Magnetic field-induced phase transformation and variant reorientation in Ni2MnGa and NiMnCoIn magnetic shape memory alloys

Karaca, Haluk Ersin 15 May 2009 (has links)
The purpose of this work is to reveal the governing mechanisms responsible for the magnetic field-induced i) martensite reorientation in Ni2MnGa single crystals, ii) stress-assisted phase transformation in Ni2MnGa single crystals and iii) phase transformation in NiMnCoIn alloys. The ultimate goal of utilizing these mechanisms is to increase the actuation stress levels in magnetic shape memory alloys (MSMAs). Extensive experimental work on magneto-thermo-mechanical (MTM) characterization of these materials enabled us to i) better understand the ways to increase the actuation stress and strain and decrease the required magnetic field for actuation in MSMAs, ii) determine the effects of main MTM parameters on reversible magnetic field induced phase transformation, such as magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), stress hysteresis, thermal hysteresis, critical stress for the stress induced phase transformation and crystal orientation, iii) find out the feasibility of employing polycrystal MSMAs, and iv) formulate a thermodynamical framework to capture the energetics of magnetic field-induced phase transformations in MSMAs. Magnetic shape memory properties of Ni2MnGa single crystals were characterized by monitoring magnetic field-induced strain (MFIS) as a function of compressive stress and stress-induced strain as a function of magnetic field. It is revealed that the selection of the operating temperature with respect to martensite start and Curie temperatures is critical in optimizing actuator performance. The actuation stress of 5 MPa and work output of 157 kJm−3 are obtained by the field-induced variant reorientation in NiMnGa alloys. Reversible and one-way stress-assisted field-induced phase transformations are observed in Ni2MnGa single crystals under low field magnitudes (<0.7T) and resulted in at least an order of magnitude higher actuation stress levels. It is very promising to provide higher work output levels and operating temperatures than variant reorientation mechanisms in NiMnGa alloys. Reversible field-induced phase transformation and shape memory characteristics of NiMnCoIn single crystals are also studied. Reversible field-induced phase transformation is observed only under high magnetic fields (>4T). Necessary magnetic and mechanical conditions, and materials design and selection guidelines are proposed to search for field-induced phase transformation in other ferromagnetic materials that undergo thermoelastic martensitic phase transformation.
88

Recentering Beam-Column Connections Using Shape Memory Alloys

Penar, Bradley W. 18 July 2005 (has links)
Shape memory alloys are a class of alloys that display the unique ability to undergo large plastic deformations and return to their original shape either through the application of heat (shape memory effect) or by relieving the stress causing the deformation (superelastic effect). This research takes advantage of the unique characteristics of shape memory alloys in order to provide a moment resisting connection with recentering capabilities. In this study, superelastic Nitinol, a nickel-titanium form of shape memory alloy that exhibits a flag-shaped stress versus strain curve, is used as the moment transfer elements within a partially restrained steel beam-column connection. Experimental testing consists of a one-half scale interior connection where the loading is applied at the column tip. A pseudo-static cyclic loading history is used which is intended to simulate earthquake loadings. The energy dissipation characteristics, moment-rotation characteristics, and deformation capacity of the connection are quantified. Results are then compared to tests where A36 steel tendons are used as the moment transfer elements. The superelastic Nitinol tendon connection showed superior performance to the A36 steel tendon connection, including the ability to recenter without residual deformation.
89

Cyclic Behavior of Shape Memory Alloys: Materials Characterization and Optimization

McCormick, Jason P. 05 April 2006 (has links)
Shape memory alloys (SMAs) are unique metallic alloys which can undergo large deformations while reverting back to their undeformed shape through either the application of heat (shape memory effect) or the removal of the load (superelastic effect). A multi-scale and multi-disciplinary approach is taken to explore the use of large diameter NiTi SMAs for applications in earthquake engineering. First, a materials characterization study is performed by studying precipitate formation, grain size and orientation, thermal transformation behavior, and strength. Cyclic tensile tests on coupon specimens and full-scale large diameter bars are then used to correlate the microstructural properties to the macroscopic behavior. Further experimental studies using NiTi wire are performed in order to optimize their properties for seismic applications. The ability of mechanical training to stabilize NiTi cyclic properties, the ability of pre-straining to increase damping levels, and the influence of different types of earthquake loadings are considered. Phenomenological mechanical models are then developed based on these results. An analytical study is then used to evaluate the performance of structural systems incorporating SMAs. One type of system evaluated includes an SMA bracing system used to modify the response of a structure during a seismic event. Overall, the results of this study have shown the ability to optimize the properties of NiTi SMAs for seismic applications through material processing. The analytical results show potential for the use of SMAs in seismic applications and provide areas for continued research.
90

Magnetic field-induced phase transformation and variant reorientation in Ni2MnGa and NiMnCoIn magnetic shape memory alloys

Karaca, Haluk Ersin 15 May 2009 (has links)
The purpose of this work is to reveal the governing mechanisms responsible for the magnetic field-induced i) martensite reorientation in Ni2MnGa single crystals, ii) stress-assisted phase transformation in Ni2MnGa single crystals and iii) phase transformation in NiMnCoIn alloys. The ultimate goal of utilizing these mechanisms is to increase the actuation stress levels in magnetic shape memory alloys (MSMAs). Extensive experimental work on magneto-thermo-mechanical (MTM) characterization of these materials enabled us to i) better understand the ways to increase the actuation stress and strain and decrease the required magnetic field for actuation in MSMAs, ii) determine the effects of main MTM parameters on reversible magnetic field induced phase transformation, such as magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), stress hysteresis, thermal hysteresis, critical stress for the stress induced phase transformation and crystal orientation, iii) find out the feasibility of employing polycrystal MSMAs, and iv) formulate a thermodynamical framework to capture the energetics of magnetic field-induced phase transformations in MSMAs. Magnetic shape memory properties of Ni2MnGa single crystals were characterized by monitoring magnetic field-induced strain (MFIS) as a function of compressive stress and stress-induced strain as a function of magnetic field. It is revealed that the selection of the operating temperature with respect to martensite start and Curie temperatures is critical in optimizing actuator performance. The actuation stress of 5 MPa and work output of 157 kJm−3 are obtained by the field-induced variant reorientation in NiMnGa alloys. Reversible and one-way stress-assisted field-induced phase transformations are observed in Ni2MnGa single crystals under low field magnitudes (<0.7T) and resulted in at least an order of magnitude higher actuation stress levels. It is very promising to provide higher work output levels and operating temperatures than variant reorientation mechanisms in NiMnGa alloys. Reversible field-induced phase transformation and shape memory characteristics of NiMnCoIn single crystals are also studied. Reversible field-induced phase transformation is observed only under high magnetic fields (>4T). Necessary magnetic and mechanical conditions, and materials design and selection guidelines are proposed to search for field-induced phase transformation in other ferromagnetic materials that undergo thermoelastic martensitic phase transformation.

Page generated in 0.0542 seconds