Spelling suggestions: "subject:"demory alloys"" "subject:"amemory alloys""
51 |
Effects of Constrained Aging on the Shape Memory Response of Nickel Rich Niti Shape Memory AlloysBarrie, Fatmata Haja 2009 December 1900 (has links)
Ni50.6Ti49.4 single and Ni52Ti48 polycrystalline shape memory alloy samples were subjected to aging under a uniaxial stress, to form a single Ni4Ti3 precipitate variant and to investigate the effects of single versus multi-variant coherent precipitates on the shape memory characteristics including two-way shape memory effect (TWSME). Shape memory and superelasticity properties along with the effects of stress and temperature on the transformation temperatures, strain, hysteresis, dimensional stability, and R-phase formation were investigated. This was accomplished through the use of isobaric thermal cycling and superelasticity experiments and various microscopy techniques that included transmission electron microscopy (TEM), scanning electron microscopy, and optical microcopy.
The results showed that it is feasible to use constrained aging to bias R-phase martensite variants upon cooling from austenite without any external stress, however, accomplishing this with B19’martensite was much harder as complete TWSME was only found in the Ni50.6Ti49.4 single crystalline sample oriented along the [112] direction. The onset of irrecoverable strain corresponded to the R-phase temperature hysteresis increase in the single crystalline samples regardless of the aging conditions. Through TEM analysis it was discovered that [112] and [114] twins were found in austenite due to plastic deformation of martensite during the superelasticity experiments. Since [112] twins are theoretically impossible to form in austenite, and since martensite was plastically deformed, [112] austenite twins were attributed to the transformation of compound twins in martensite, in particular [113] martensite twins formed during the plastic deformation of martensite, into austenite twins.
In the Ni52Ti48 polycrystalline samples, a compressive R-phase variant was biased through constrained aging under 100 and 200 MPa uniaxial tensile stresses at 400°C and 450°C. Aging, in all conditions, produced a high density of Ni4Ti3 precipitates that was most likely responsible for the small transformation strain observed, less that 2%, upon transformation to martensite.
In the future, samples with compositions between 50.8 and 51.5 Ni atomic percent, in addition to altered solution and aging heat treatments as compared to those used in this study should be investigated as it is believed that samples with these compositions will yield better and consistent TWSME responses through constrained aging.
|
52 |
Transformation Induced Fatigue of Ni-Rich NiTi Shape Memory Alloy ActuatorsSchick, Justin Ryan 2009 December 1900 (has links)
In this work the transformation induced fatigue of Ni-rich NiTi shape memory alloys (SMAs) was investigated. The aerospace industry is currently considering implementing SMA actuators into new applications. However, before any new applications can be put into production they must first be certified by the FAA. Part of this certification process includes the actuator fatigue life. In this study, as-received and polished at dogbone SMA specimens underwent transformation induced fatigue
testing at constant loading. The constant applied loading ranged from 100 MPa to 200 MPa. Specimens were thermally cycled through complete actuation (above Af to below Mf ) by Joule heating and environmental cooling. There were three cooling environments studied: liquid, gaseous nitrogen and vortex cooled air. It was shown that polished specimens had fatigue lives that were two to four times longer than those of as-received specimens. Test environment was also found to have an effect on fatigue life. Liquid cooling was observed to be corrosive, while the gaseous nitrogen and vortex air cooling were observed to be non-corrosive. The two non-corrosive cooling environments performed similarly with specimen fatigue lives that were twice that of specimens fatigue tested in the corrosive cooling environment. Transformation induced fatigue testing of polished specimens in a non-corrosive environment at 200 MPa had an average fatigue life of 14400 actuation cycles; at 150 MPa the average fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles. For all specimens constant actuation from the beginning of testing until failure was observed, without the need for training. Finally, a microstructural study showed that the Ni3Ti precipitates in the material were one of the causes of crack initiation and propagation in the actuators.
|
53 |
Discrete Preisach Model for the Superelastic Response of Shape Memory AlloysDoraiswamy, Srikrishna 2010 December 1900 (has links)
The aim of this work is to present a model for the superelastic response of Shape
Memory Alloys (SMAs) by developing a Preisach Model with thermodynamics basis.
The special features of SMA superelastic response is useful in a variety of applications
(eg. seismic dampers and arterial stents). For example, under seismic loads the SMA
dampers undergo rapid loading{unloading cycles, thus going through a number of
internal hysteresis loops, which are responsible for dissipating the vibration energy.
Therefore the design for such applications requires the ability to predict the response,
particularly internal loops. It is thus intended to develop a model for the superelastic
response which is simple, computationally fast and can predict internal loops. The
key idea here is to separate the elastic response of SMAs from the dissipative response
and apply a Preisach Model to the dissipative response as opposed to the popular
notion of applying the Preisach Model to the stress{strain response directly. Such a
separation allows for the better prediction of internal hysteresis, avoids issues due to
at/negative slopes in the stress{strain plot, and shows good match with experimental
data, even when minimal input is given to the model.
The model is developed from a Gibbs Potential, which allows us to compute a
driving force for the underlying phase transformation in the superelastic response.
The hysteresis between the driving force for transformation and the extent of transformation
(volume fraction of martensite) is then used with a Preisach model. The Preisach model parameters are identi ed using a least squares approach. ASTM
Standards for the testing of NiTi wires (F2516-07^sigma 2), are used for the identi cation of
the parameters in the Gibbs Potential. The simulations are run using MATLAB R
.
Results under di erent input conditions are discussed. It is shown that the predicted
response shows good agreement with the experimental data. A couple of attempts at
extending the model to bending and more complex response of SMAs is also discussed.
|
54 |
Experimental investigation on phase transformation of superelastic NiTi microtubes /Li, Zhiqi. January 2002 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 155-160). Also available in electronic version. Access restricted to campus users.
|
55 |
Analytical studies on the force-induced phase transitions in slender shape memory alloy cylinders layers /Wang, Jiong. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [214]-224)
|
56 |
Stress-induced phase transformation and reorientation in NiTi tubes /Ng, Kwok Leung. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 94-98). Also available in electronic version. Access restricted to campus users.
|
57 |
Functional coatings on Ti-6A1-4V and NiTi shape memory alloy for medical applicationsLee, Wing-cheung., 李永祥. January 2011 (has links)
Due to its excellent biocompatibility and mechanical properties, Ti-6Al-4V alloy has been extensively used in the medical field, especially as a material for hard tissue replacement. Owing to the unique shape memory and superelastic properties, NiTi shape memory alloy (SMA, with 50.8 at.% of Ni) has been investigated for load-bearing applications in orthopedics and dentistry. Since the longevity of current metal implants is approximately 10 to 15 years, many patients need to have revision surgeries in their lifetime. Therefore, there is great interest in the long-term stability, biocompatibility, bioactivity and other properties of Ti-6Al-4V and NiTi SMA implants. Implant-associated infections also pose serious threat to the success of metal implants. The goal of this project was to investigate several low-temperature surface modification techniques, including anodization and electrochemical deposition, and formulate coatings for potential clinical applications. Accordingly, several types of coatings were synthesized on Ti-6Al-4V and NiTi SMA substrates. Various aspects of the coatings, such as morphology, chemical composition, crystallinity, phase and bioactivity, were analyzed.
Firstly, a systematic study on the formation of titania nanotubes on Ti-6Al-4V by anodization was performed. Anodizing voltage and time were varied for comparisons. A dense and compact titania nanotube layer was synthesized on Ti-6Al-4V by anodizing at 25 V for 20 min. The titania nanotubes formed were rutile. After annealing at 500oC for 1 h, the titania nanotubes became anatase. The anatase phase exhibited better wettability than the rutile phase.
Secondly, dense and compact apatite coatings were formed on NiTi SMA samples through electrochemical deposition using mainly double-strength simulated body fluid (2SBF) as the electrolyte. The deposition conditions were varied and apatite coating characteristics studied. With the inclusion of collagen molecules (0.1 mg/ml) in the electrolyte (2SBFC), apatite/collagen composite coatings were fabricated. Collagen fibrils were not only observed on the surface of composite coatings but also were embedded inside in the coatings and at the coating-substrate interface. Results obtained from transmission electron microscopic and X-ray diffraction analyses showed that the apatite crystals in apatite coatings and apatite/collagen composite coatings were calcium-deficient carbonated hydroxyapatite. Apatite/collagen composite coatings exhibited excellent hydrophilicity, whereas apatite coatings displayed hydrophobic surfaces.
Finally, gentamicin-loaded, tobramycin-loaded, and vancomycin-loaded apatite coatings and apatite/collagen composite coatings were synthesized on NiTi SMA samples through electrochemical deposition using different drug concentrations in the electrolytes. A comparative study of apatite coatings and apatite/collagen composite coatings as drug delivery vehicles were conducted. Different aspects of antibiotic-loaded coatings (surface characteristics, chemical composition, wettability, etc.) and in vitro release behaviour were investigated. The antibiotics were physically embedded in coatings during coating formation. Upon sample soaking in phosphate-buffered saline (PBS), the release profiles established for antibiotic-loaded coatings demonstrated different levels of initial burst release and subsequent steady release characteristics. Apatite coatings and apatite/collagen coatings displayed preferential incorporation of specific antibiotics. For instance, apatite/collagen coatings showed better vancomycin incorporation than apatite coatings and the incorporation of vancomycin was better than tobramycin for apatite/collagen coatings. Apatite coatings demonstrated better tobramycin incorporation than apatite/collagen composite coatings. / published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
58 |
Deformation Behaviour of TiNi Shape Memory Alloys under Tensile and Compressive LoadsShahirnia, Meisam 08 June 2011 (has links)
TiNi shape memory alloys (SMAs) have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelasticity effects, along with its superior wear and dent resistance. Shape memory and superelastic effects are due to a reversible martensitic transformation that can be induced either thermally or mechanically. In this study, indentation tests at different temperatures, loads and strain rates have been performed on superelastic TiNi alloy. Deformation characteristics of superelastic TiNi under indentation have been compared to AISI 304 steel as a conventional material. Also, in-situ optical microscopy tests with interrupted heating have been employed in order to gain an insight into the coupled deformation and reversible martensitic transformation behaviour of TiNi SMAs under tensile loads. An understanding of the impacts of strain rate and temperature on the deformation behaviour of TiNi SMAs under localized compressive loads has been proposed.
|
59 |
Seismic retrofit of bridges using shape memory alloysDelemont, Michael A. 12 1900 (has links)
No description available.
|
60 |
A study and implementation analysis of an anti-sagging device for power transmission lines using shape memory alloys31 August 2010 (has links)
Shape memory alloys (SMA’s) are a family of metals that exhibit properties of pseudo-elasticity / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2009.
|
Page generated in 0.0516 seconds