Spelling suggestions: "subject:"meromorphic"" "subject:"xeromorphic""
21 |
Poisson Structures and Lie Algebroids in Complex GeometryPym, Brent 14 January 2014 (has links)
This thesis is devoted to the study of holomorphic Poisson structures and Lie algebroids, and their relationship with differential equations, singularity theory and noncommutative algebra.
After reviewing and developing the basic theory of Lie algebroids in the framework of complex analytic and algebraic geometry, we focus on Lie algebroids over complex curves and their application to the study of meromorphic connections. We give concrete constructions of the corresponding Lie groupoids, using blowups and the uniformization theorem. These groupoids are complex surfaces that serve as the natural domains of definition for the fundamental solutions of ordinary differential equations with singularities. We explore the relationship between the convergent Taylor expansions of these fundamental solutions and the divergent asymptotic series that arise when one attempts to solve an ordinary differential equation at an irregular singular point.
We then turn our attention to Poisson geometry. After discussing the basic structure of Poisson brackets and Poisson modules on analytic spaces, we study the geometry of the degeneracy loci---where the dimension of the symplectic leaves drops. We explain that Poisson structures have natural residues along their degeneracy loci, analogous to the Poincar\'e residue of a meromorphic volume form. We discuss the local structure of degeneracy loci that have small codimensions, and place strong constraints on the singularities of the degeneracy hypersurfaces of log symplectic manifolds. We use these results to give new evidence for a conjecture of Bondal.
Finally, we discuss the problem of quantization in noncommutative projective geometry. Using Cerveau and Lins Neto's classification of degree-two foliations of projective space, we give normal forms for unimodular quadratic Poisson structures in four dimensions, and describe the quantizations of these Poisson structures to noncommutative graded algebras. As a result, we obtain a (conjecturally complete) list of families of quantum deformations of projective three-space. Among these algebras is an ``exceptional'' one, associated with a twisted cubic curve. This algebra has a number of remarkable properties: for example, it supports a family of bimodules that serve as quantum analogues of the classical Schwarzenberger bundles.
|
22 |
Poisson Structures and Lie Algebroids in Complex GeometryPym, Brent 14 January 2014 (has links)
This thesis is devoted to the study of holomorphic Poisson structures and Lie algebroids, and their relationship with differential equations, singularity theory and noncommutative algebra.
After reviewing and developing the basic theory of Lie algebroids in the framework of complex analytic and algebraic geometry, we focus on Lie algebroids over complex curves and their application to the study of meromorphic connections. We give concrete constructions of the corresponding Lie groupoids, using blowups and the uniformization theorem. These groupoids are complex surfaces that serve as the natural domains of definition for the fundamental solutions of ordinary differential equations with singularities. We explore the relationship between the convergent Taylor expansions of these fundamental solutions and the divergent asymptotic series that arise when one attempts to solve an ordinary differential equation at an irregular singular point.
We then turn our attention to Poisson geometry. After discussing the basic structure of Poisson brackets and Poisson modules on analytic spaces, we study the geometry of the degeneracy loci---where the dimension of the symplectic leaves drops. We explain that Poisson structures have natural residues along their degeneracy loci, analogous to the Poincar\'e residue of a meromorphic volume form. We discuss the local structure of degeneracy loci that have small codimensions, and place strong constraints on the singularities of the degeneracy hypersurfaces of log symplectic manifolds. We use these results to give new evidence for a conjecture of Bondal.
Finally, we discuss the problem of quantization in noncommutative projective geometry. Using Cerveau and Lins Neto's classification of degree-two foliations of projective space, we give normal forms for unimodular quadratic Poisson structures in four dimensions, and describe the quantizations of these Poisson structures to noncommutative graded algebras. As a result, we obtain a (conjecturally complete) list of families of quantum deformations of projective three-space. Among these algebras is an ``exceptional'' one, associated with a twisted cubic curve. This algebra has a number of remarkable properties: for example, it supports a family of bimodules that serve as quantum analogues of the classical Schwarzenberger bundles.
|
23 |
Application of quasiconformal surgery to some transcendental meromorphic functions / 超越有理型関数への擬等角手術の応用Naba, Hiroto 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第24698号 / 人博第1071号 / 新制||人||251(附属図書館) / 2022||人博||1071(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)准教授 木坂 正史, 教授 角 大輝, 教授 足立 匡義, 教授 諸澤 俊介 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
24 |
On unicity problems of meromorphic mappings of Cn into PN(C) and the ramification of the Gauss maps of complete minimal surfaces / Problèmes d'unicité pour des applications méromorphes de Cn dans CPN et ramification de l'application de Gauss pour des surfaces minimales complètesHa, Pham Hoang 03 May 2013 (has links)
En 1975 H. Fujimoto a généralisé les résultats d’unicité pour des fonctions holomorphes dus à Nevanlinna pour des applications méromorphes de Cn dans CPN. Il a démontré que pour deux applications méromorphes non linéairement dégénérées f et g de Cn dans CPN, si elles ont les mêmes images réciproques, comptées avec leurs multiplicités, par rapport à (3N + 2) hyperplans de CPN en position générale, alors f g. Depuis, ce problème a été étudié d’une manière intensive par H. Fujimoto, W. Stoll, L. Smiley, M. Ru, G. Dethloff-T.V.Tan, D.D.Thai-S.D.Quang, Chen-Yan et d’autres auteurs. En parallèle avec le développement de la théorie de Nevanlinna, la théorie de distribution des valeurs de l’application de Gauss des surfaces minimales dans Rm a été étudiée d’une manière intensive par R.Osserman, S.S. Chern, F. Xavier, H. Fujimoto, S.J. Kao, M. Ru et d’autres auteurs. Dans cette thèse, nous avons continué d’étudier ces problèmes. Nous avons obtenu les résultats principaux suivants: +) Théorèmes d’unicité avec multiplicités tronquées des applications méromorphes de Cn dans CPN ayant les mêmes images réciproques par rapport è (2N + 2) hyperplans de CPN. +) Théorèmes d’unicité avec multiplicités tronquées des applications méromorphes de Cn dans CPN ayant des cibles mobiles et un ensemble d’identité petit. +) Théorèmes d’unicité avec multiplicités tronquées des applications méromorphes de Cn dans CPN ayant des cibles fixes ou mobiles et satisfaisant des conditions sur les dérivées. +) Théorèmes de ramification de l’application de Gauss de certaines classes de surfaces minimales complètes dans Rm (m = 3,4). / In 1975, H. Fujimoto generalized Nevanlinna’s known results for meromorphic fonctions to the case of meromorphic mappings of Cn into PN(C). He proved that for two linearly nondegenerate meromorphic mappings f and g of C into PN(C). if they have the saine inverse images counted with multiplicities for 3N + 2 hyperplanes in general position in PN(C) then f = g. After that, this problem has been studied intensively by a number of mathematicans as H. Fujimoto, W. Stoll, L. Smiley, M. Ru, G. Dethloff - T. V. Tan, D. D. Thai - S. D. Quang, Chen-Yan and so on. Parallel to the development of Nevanlinna theory, the value distribution theory of the Gauss map of minimal surfaces immersed in Rm vas studied by many mathematicans as R. Osserman, S.S. Chern, F. Xavier, H. Fujimoto, S. J. Kao, M. Ru and many other mathematicans. In this thesis, we continuous studing some problems on these directions. The main goals of the thesis are followings. • Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) sharing 2N + 2 fixed hyperplanes.• Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) for moving targets, and a small set of identity.
|
25 |
On unicity problems of meromorphic mappings of Cn into PN(C) and the ramification of the Gauss maps of complete minimal surfacesHa, Pham Hoang 03 May 2013 (has links) (PDF)
In 1975, H. Fujimoto generalized Nevanlinna's known results for meromorphic fonctions to the case of meromorphic mappings of Cn into PN(C). He proved that for two linearly nondegenerate meromorphic mappings f and g of C into PN(C). if they have the saine inverse images counted with multiplicities for 3N + 2 hyperplanes in general position in PN(C) then f = g. After that, this problem has been studied intensively by a number of mathematicans as H. Fujimoto, W. Stoll, L. Smiley, M. Ru, G. Dethloff - T. V. Tan, D. D. Thai - S. D. Quang, Chen-Yan and so on. Parallel to the development of Nevanlinna theory, the value distribution theory of the Gauss map of minimal surfaces immersed in Rm vas studied by many mathematicans as R. Osserman, S.S. Chern, F. Xavier, H. Fujimoto, S. J. Kao, M. Ru and many other mathematicans. In this thesis, we continuous studing some problems on these directions. The main goals of the thesis are followings. * Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) sharing 2N + 2 fixed hyperplanes.* Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) for moving targets, and a small set of identity.
|
26 |
Dirichlė L funkcijų Melino transformacijos / Mellin transforms of Dirichlet L- functionsBalčiūnas, Aidas 09 December 2014 (has links)
Disertacijoje gautas Dirichlė L funkcijų modifikuotosios Melino transformacijos pratęsimas į visą kompleksinę plokštumą. / In the thesis a meremorphic continuation of Dirichlet L- functions to the whole complex plane have been obtained.
|
27 |
Mellin transforms of Dirichlet L-functions / Dirichlė L funkcijų Melino transformacijosBalčiūnas, Aidas 09 December 2014 (has links)
In the thesis moromorphic continuation of modified Mellin transforms of Dirichlet L-functions to the whole complex plane have been obtained. / Disertacijoje gauta modifikuotosios Melino transformacijos L- funkcijai meromorfinis pratęsimas į visą kompleksinę plokštumą.
|
28 |
半純函數體中的函數方程 / On Functional Equations in the Field of Meromorphic Functions葉長青, Yeh, Chang Ching Unknown Date (has links)
在這篇論文中,我們將利用值分佈的理論來探討下列函數方程解的存在性與其性質:
\[\sum_{j=1}^pa_j(z)f_j(z)^{k_j}=1,\]
其中 $a_1(z),\cdots ,a_p(z)$ 為半純函數。對某些特殊方程,除了文獻裡已知的結果外,我們亦提供其它的例子。一般而言,我們探討解存在的必要條件。另外,我們證明了某一類半純函數之零點與極點之分佈的結果。 / In this thesis, we use the theory of value distribution to study the existence of solution of the following functional equation:
\[\sum_{j=1}^pa_j(z)f_j(z)^{k_j}=1,\]
where $a_1(z),\cdots ,a_p(z)$ are meromorphic functions. For some special case, new and old examples of the solutions are given. For the general case, a necessary condition for the existence of solution is considered. Moreover, we obtain a result on the distribution of zeros and poles of a class of meromorphic functions.
|
29 |
Extensions of the Cayley-Hamilton Theorem with Applications to Elliptic Operators and Frames.Teguia, Alberto Mokak 16 August 2005 (has links) (PDF)
The Cayley-Hamilton Theorem is an important result in the study of linear transformations over finite dimensional vector spaces. In this thesis, we show that the Cayley-Hamilton Theorem can be extended to self-adjoint trace-class operators and to closed self-adjoint operators with trace-class resolvent over a separable Hilbert space. Applications of these results include calculating operators resolvents and finding the inverse of a frame operator.
|
30 |
Sur la répartition des zéros de certaines fonctions méromorphes liées à la fonction zêta de RiemannVelasquez Castanon, Oswaldo 19 September 2008 (has links)
Nous traitons trois problèmes liés à la fonction zêta de Riemann : 1) L'établissement de conditions pour déterminer l'alignement et la simplicité de la quasi-totalité des zéros d'une fonction de la forme f(s)=h(s)±h(2c-s), où h(s) est une fonction méromorphe et c un nombre réel. Cela passe par la généralisation du théorème d'Hermite-Biehler sur la stabilité des fonctions entières. Comme application, nous avons obtenu des résultats sur la répartition des zéros des translatées de la fonction zêta de Riemann et de fonctions L, ainsi que sur certaines intégrales de séries d'Eisenstein. 2) L'étude de la répartition des zéros des sommes partielles de la fonction zêta, et des ses approximations issues de la formule d'Euler-Maclaurin. 3) L'étude du prolongement méromorphe et de la frontière naturelle pour une classe de produits eulériens, qui inclut une série de Dirichlet utilisée dans l'étude de la répartition des valeurs de l'indicatrice d'Euler. / We deal with three problems related to the Riemann zeta function: 1) The establishment of conditions to determine the alignment and simplicity of most of the zeros of a function of the form f(s)=h(s)±h(2c-s), where h(s) is a meromorphic function and c a real number. To this end, we generalise the Hermite-Biehler theorem concerning the stability of entire functions. As an application, we obtain some results about the distribution of zeros of translations of the Riemann Zeta Function and L functions, and about certain integrals of Eisenstein series. 2) The study of the distribution of the zeros of the partial sums of the zeta function, and of some approximations issued from the Euler-Maclaurin formula. 3) The study of the meromorphic continuation and the natural boundary of a class of Euler products, which includes a Dirichlet series used in the study of the distribution of values of the Euler totient.
|
Page generated in 0.0461 seconds