Spelling suggestions: "subject:"dirichlet L actionfunction"" "subject:"dirichlet L functionaction""
1 |
FUNCTIONAL EQUATIONS FOR DOUBLE L-FUNCTIONS AND VALUES AT NON-POSITIVE INTEGERSTSUMURA, HIROFUMI, MATSUMOTO, KOHJI, KOMORI, YASUSHI 09 1900 (has links)
No description available.
|
2 |
Dirichlė L funkcijų Melino transformacijos / Mellin transforms of Dirichlet L- functionsBalčiūnas, Aidas 09 December 2014 (has links)
Disertacijoje gautas Dirichlė L funkcijų modifikuotosios Melino transformacijos pratęsimas į visą kompleksinę plokštumą. / In the thesis a meremorphic continuation of Dirichlet L- functions to the whole complex plane have been obtained.
|
3 |
Mellin transforms of Dirichlet L-functions / Dirichlė L funkcijų Melino transformacijosBalčiūnas, Aidas 09 December 2014 (has links)
In the thesis moromorphic continuation of modified Mellin transforms of Dirichlet L-functions to the whole complex plane have been obtained. / Disertacijoje gauta modifikuotosios Melino transformacijos L- funkcijai meromorfinis pratęsimas į visą kompleksinę plokštumą.
|
4 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
5 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
6 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
7 |
Topics in Analytic Number TheoryPowell, Kevin James 31 March 2009 (has links) (PDF)
The thesis is in two parts. The first part is the paper “The Distribution of k-free integers” that my advisor, Dr. Roger Baker, and I submitted in February 2009. The reader will note that I have inserted additional commentary and explanations which appear in smaller text. Dr. Baker and I improved the asymptotic formula for the number of k-free integers less than x by taking advantage of exponential sum techniques developed since the 1980's. Both of us made substantial contributions to the paper. I discovered the exponent in the error term for the cases k=3,4, and worked the case k=3 completely. Dr. Baker corrected my work for k=4 and proved the result for k=5. He then generalized our work into the paper as it now stands. We also discussed and both contributed to parts of section 3 on bounds for exponential sums. The second part represents my own work guided by my advisor. I study the zeros of derivatives of Dirichlet L-functions. The first theorem gives an analog for a result of Speiser on the zeros of ζ'(s). He proved that RH is equivalent to the hypothesis that ζ'(s) has no zeros with real part strictly between 0 and ½. The last two theorems discuss zero-free regions to the left and right for L^{(k)}(s,χ).
|
8 |
Sur la répartition des unités dans les corps quadratiques réelsLacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)
|
9 |
Sur la répartition des unités dans les corps quadratiques réelsLacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)
|
Page generated in 0.0622 seconds