Spelling suggestions: "subject:"mesenchymal progenitors"" "subject:"mesenchymal progenitores""
1 |
Roles of Matrix Mechanics in Regulating Aortic Valve Interstitial Cell Pathological DifferentiationChen, Jan-Hung 05 January 2012 (has links)
Calcific aortic valve disease (CAVD) is associated with increased presence of myofibroblasts, osteoblastic cells and, occasionally, adipocytes and chondrocytes in lesions. The ectopic cell types in diseased valves may be elaborated by an unidentified multipotent progenitor subpopulation within the valve interstitial cells (VICs) that populate the valve interstitium. Notably, lesions form preferentially in the fibrosa layer, the stiffer layer of the valve leaflet. It has been shown that differentiation of VICs to myofibroblasts and osteoblasts is modulated by matrix stiffness. However, the molecular mechanisms involved in mediating stiffness-dependent mechanotransduction remain obscure. The objectives of this thesis were: (1) to determine whether VICs contain a subpopulation of multipotent mesenchymal progenitor cells and to measure the frequencies of the mesenchymal progenitors and osteoprogenitors; (2) to determine the role of β-catenin and matrix stiffness in transforming growth factor-β1 (TGF-β1)-induced myofibroblast differentiation of VICs; and (3) to preliminarily investigate the involvement of four and a half LIM domains protein 2 (FHL2) in CAVD and stiffness-dependent mechanotransduction downstream of RhoA in VICs. Firstly, VICs were found to contain a subpopulation of mesenchymal progenitors that are inducible to osteogenic, myofibroblastic, adipogenic, and chondrogenic lineages. The frequencies of mesenchymal progenitors and osteoprogenitors were significantly higher than other reported sources. Secondly, it was demonstrated that β-catenin is required in TGF-β1-induced, matrix stiffness-regulated myofibroblast differentiation. Notably, TGF-β1 was only able to induce β-catenin nuclear translocation and myofibroblast differentiation on matrices with fibrosa-like stiffness, but not on matrices with ventricularis-like stiffness. Thirdly, FHL2 was found to be upregulated and colocalized with runt-related transcriptional factor 2 (Runx2) in lesions in the fibrosa layer of diseased valves, suggesting its role in osteogenic processes in CAVD. Notably, increasing matrix stiffness increased FHL2 nuclear translocation and RhoA activity in VICs. Preliminary data showed that matrix stiffness regulates FHL2 nuclear translocation via RhoA activity. These results suggest that differentiation of the rich valve progenitor subpopulation, regulated by both mechanical and biochemical cues, may contribute to the preferential occurrence of ectopic cell types in the fibrosa in CAVD. More broadly, these results highlight the critical role of mechanical environment in modulating cellular biochemical signaling.
|
2 |
Roles of Matrix Mechanics in Regulating Aortic Valve Interstitial Cell Pathological DifferentiationChen, Jan-Hung 05 January 2012 (has links)
Calcific aortic valve disease (CAVD) is associated with increased presence of myofibroblasts, osteoblastic cells and, occasionally, adipocytes and chondrocytes in lesions. The ectopic cell types in diseased valves may be elaborated by an unidentified multipotent progenitor subpopulation within the valve interstitial cells (VICs) that populate the valve interstitium. Notably, lesions form preferentially in the fibrosa layer, the stiffer layer of the valve leaflet. It has been shown that differentiation of VICs to myofibroblasts and osteoblasts is modulated by matrix stiffness. However, the molecular mechanisms involved in mediating stiffness-dependent mechanotransduction remain obscure. The objectives of this thesis were: (1) to determine whether VICs contain a subpopulation of multipotent mesenchymal progenitor cells and to measure the frequencies of the mesenchymal progenitors and osteoprogenitors; (2) to determine the role of β-catenin and matrix stiffness in transforming growth factor-β1 (TGF-β1)-induced myofibroblast differentiation of VICs; and (3) to preliminarily investigate the involvement of four and a half LIM domains protein 2 (FHL2) in CAVD and stiffness-dependent mechanotransduction downstream of RhoA in VICs. Firstly, VICs were found to contain a subpopulation of mesenchymal progenitors that are inducible to osteogenic, myofibroblastic, adipogenic, and chondrogenic lineages. The frequencies of mesenchymal progenitors and osteoprogenitors were significantly higher than other reported sources. Secondly, it was demonstrated that β-catenin is required in TGF-β1-induced, matrix stiffness-regulated myofibroblast differentiation. Notably, TGF-β1 was only able to induce β-catenin nuclear translocation and myofibroblast differentiation on matrices with fibrosa-like stiffness, but not on matrices with ventricularis-like stiffness. Thirdly, FHL2 was found to be upregulated and colocalized with runt-related transcriptional factor 2 (Runx2) in lesions in the fibrosa layer of diseased valves, suggesting its role in osteogenic processes in CAVD. Notably, increasing matrix stiffness increased FHL2 nuclear translocation and RhoA activity in VICs. Preliminary data showed that matrix stiffness regulates FHL2 nuclear translocation via RhoA activity. These results suggest that differentiation of the rich valve progenitor subpopulation, regulated by both mechanical and biochemical cues, may contribute to the preferential occurrence of ectopic cell types in the fibrosa in CAVD. More broadly, these results highlight the critical role of mechanical environment in modulating cellular biochemical signaling.
|
3 |
Changes in chondrogenic progenitor populations associated with osteoarthritis grades / Etude des progéniteurs chondrogéniques en fonction du niveau d'atteinte du cartilage articulaireMazor, Marija 14 December 2016 (has links)
L'arthrose (OA) est une maladie dégénérative avec un impact remarquable sur la qualité de vie. Pourtant, aucune intervention pharmacologique entièrement appropriée, aucune thérapie biologique ou procédure n'entraînent la dégradation progressive de l'articulation OA. Ici, nous explorons les cellules souches mésenchymateuses (MSC) - précurseurs multi-potentiels de cellules qui peuvent être isolées à partir de différents niveaux de dégradation du cartilage. Nous émettons l'hypothèse que les cellules progénitrices mésenchymateuses (CPM) pourraient servir comme une thérapie potentielle. Le cartilage ostéoarthritique humain a été obtenu de 25 patients subissant un remplacement total du genou et classé en différents niveaux de dégradation. Les niveaux d'expression de l'ARNm de CD105, CD166, Notch 1, Sox9, Acan, Col II A1 et Col I A1 ont été mesurés au jour 0, au jour 14 (2 semaines in vitro) et au jour 35 (après chondrogénèse). Les cellules de toutes les classes d'OA ont augmenté de façon significative les marqueurs MPC de l'ARNm avec expression in vitro. Les cellules proliférées ont exprimées des marqueurs spécifiques aux MPC: CD105, CD166, CD73, CD90, Notch – 1 and Nucleostemin. La chondrogénèse induit une diminution de l'ARNm de CD105, de Notch 1 et de Sox9 seulement dans l'OA légère et modérée. Cependant, seules les pastilles modérées dérivées d 'OA ont révélé des signes de cartilage hyaline élevé - collagène II et faible expression de fibrocartilage - collagène I à la fois au niveau de l’ARNm et de la protéine. Une nouvelle conclusion émerge de nos données et confirme les différences dans les marqueurs MPC entre les différents niveaux de dégradation. Seules les cellules dérivées d 'OA modérées ont été capables de former une matrice hyaline composée de protéoglycanes et de collagène II avec le niveau faible en collagène I fibrocartilagineux. Nos résultats montrent que les CPM provenant d’un cartilage d’un niveau de dégradation modéré ont un fort potentiel d'auto-réparation. / Osteoarthritis (OA) is a degenerative disease with a remarkable impact on quality of life. Yet no fully appropriate pharmacological intervention, biologic therapy or procedure stops the progressive degradation of the OA joint. Herein, we explore mesenchymal stem cells (MSCs)—multipotent precursors of cells that can be isolated from different grades of OA cartilage. We hypothesize that mesenchymal progenitors cells (MPC), could emerge as a potential therapy. Human osteoarthritic cartilage were obtained and scored (according to the OARSI) from 25 patients undergoing total knee replacement. mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan, Col II A1 and Col I A1 were measured at day 0, day 14 (2 weeks in vitro) and day 35 (after chondrogenesis). Cells from all OA grades significantly increased MPC markers mRNA with in vitro expression. Proliferated cells expressed MPC specific antigens: CD105, CD166, CD73, CD90, Notch – 1 and Nucleostemin. The chondrogenesis induced decrease in CD105, Notch 1 and Sox9 mRNA only in mild and moderate OA. Yet, only moderate OA – derived pellets revealed high hyaline cartilage marker – collagen II and low fibrocartilage marker – Collagen I expression at both mRNA and protein level. A novel finding emerges from our data and confirms differences in MPC markers between OA grades. Only moderate – OA derived cells were able to form hyaline – like matrix composed of proteoglycans and collagen II with law level of fibrocartilaginous collagen I. Further studies that investigate the mechanistic effects of chondrogenic progenitor populations associated with aging and the progression of OA are crucial to our understanding of the clinical relevance of these cells for use in cartilage repair therapies.
|
4 |
Fonction de la protéine LIX1 dans la régulation de la plasticité cellulaire du muscle lisse digestif / Function of the LIX1 protein in the regulation of digestive smooth muscle cell plasticityGuerin, Amandine 25 October 2019 (has links)
L’appareil digestif est un organe vital qui assure la digestion des aliments, l’absorption des nutriments et l’élimination des déchets. Une des propriétés essentielles du tube digestif est la motricité digestive qui est définie comme l’ensemble des contractions nécessaires au transit du bol alimentaire depuis la bouche jusqu’à l’anus. Les acteurs de la motricité digestive sont le système nerveux entérique, les cellules interstitielles de Cajal, et les cellules musculaires lisses. Les cellules musculaires lisses et les cellules interstitielles de Cajal ont pour origine un progéniteur mésenchymateux commun. Les cellules dérivées du mésenchyme présentent une certaine plasticité et sont capables de transiter d’un état différencié contractile et fonctionnel à un état prolifératif et immature. Toutefois, un déséquilibre de cette balance au profit de l’état d’immaturité est à l’origine de désordres de motricité digestive. Les travaux de recherches développés par l’équipe ont pour objectifs d’étudier les mécanismes qui gouvernent la différenciation des progéniteurs mésenchymateux digestifs afin d’étudier ces mécanismes en conditions pathologiques. Dans cet optique, l’équipe a identifié le gène LIX1 (LImb eXpression 1) comme le premier marqueur moléculaire de l’immaturité du muscle lisse digestif et a mis en évidence son rôle dans le contrôle de la différenciation des progéniteurs mésenchymateux au travers de la régulation de l’oncogène YAP1 (McKey et al, 2016). Dans ce contexte, le travail de recherche que j’ai réalisé s’est principalement concentré sur l’étude de LIX1 et de ses protéines partenaires dans le contrôle de la différenciation des cellules musculaires lisses gastriques et leur plasticité en conditions pathologiques.Dans un premier temps, j’ai étudié la fonction de LIX1 dans un cancer mésenchymateux du tube digestif, les GISTs (GastroIntestinal Stromal Tumor). J’ai mis en évidence le rôle et la fonction de LIX1 dans l’agressivité et dans l’immaturité des GISTs. Dans un deuxième temps, j’ai participé à la caractérisation moléculaire de cellules dérivées de patients POIC (Pseudo Obstruction Intestinale Chronique) pour lesquelles nous avons mis en évidence un défaut de différenciation associé à une expression anormale de PDGFR-A. Dans un troisième temps, j’ai développé un modèle de cellules musculaires lisses gastriques humaines dont la différenciation est maîtrisable pour étudier le métabolisme au cours de la différenciation. L’ensemble des travaux montre que LIX1 et sa mécanistique participent à la plasticité des SMCs. / The digestive tract is a vital organ ensuring food digestion, nutrient absorption and waste excretion. One of the main properties of digestive tract is the motricity which is defined as the set of contractions that allows the transition of the food from the mouth to the anus. Cells involved in the regulation of digestive plasticity are the enteric nervous cells, the interstitial cells of Cajal and the smooth muscle cells. The interstitial cells of Cajal and smooth muscle cells derived from a common mesenchymal progenitor. Mesenchyme-derived cells have the unique capacity to switch from the contractile and functional state to an immaturity state. This plasticity is responsible for motricity disorders. Our work aims to identify the mechanisms involved in the differentiation of the mesenchymal progenitors and to study those mechanisms in pathological conditions. The team previously identified the LIX1 gene (LImb eXpression 1) as the first molecular marker of the digestive smooth muscle immaturity and demonstrated its role on the differentiation of mesenchymal progenitors through the control of YAP1 (McKey et al., 2016). In this context, during my thesis, I focused on LIX1 and the mitochondrial remodeling as a putative regulatory mechanism of mesenchymal-derived cells differentiation. First, I investigated and demonstrated the role and function of LIX1 in the aggressiveness and the immaturity of the GastroIntestinal Stromal Tumor (GIST) cells. In parallel, I participated to the characterization of cells derived from CPIO (Chronic Pseudo Intestinal Obstruction) patients. Finally, I developed a new model of human gastric smooth muscle cells to evaluate the metabolism during the SMC differentiation. Altogether, we showed that LIX1 and its downstream pathways control SMC plasticity.
|
5 |
Role des Péricytes Pulmonaires dans l’Hypertension Artérielle Pulmonaire : à la recherche de nouvelles cibles thérapeutiques / Role of pericytes pulmonary in Pulmonary arterial hypertension : in search of new therapeutic targetsBordenave, Jennifer 20 September 2019 (has links)
Les péricytes sont fortement suspectés de jouer un rôle déterminant dans la physiopathologie de l’hypertension artérielle pulmonaire (HTAP), non seulement en raison de leur position et distribution, de leur rôle dans l'homéostasie vasculaire, de leur plasticité et spécificité tissulaire, mais aussi vu leur nette augmentation en nombre autour des artérioles pulmonaires remodelées. Cependant, les mécanismes impliqués dans leur accumulation autour des vaisseaux remodelés ainsi que leur importance dans la mise en place et la progression de l’HTAP restent encore incompris. De plus, nous ne savons pas si les péricytes présentent ou non des anomalies phénotypiques dans l’HTAP.C’est pourquoi ces travaux de doctorat ont visé à : 1) Identifier les possibles anomalies intrinsèques des péricytes provenant de patients HTAP ; 2) Préciser rôle de la voie de signalisation CXCL12/CXCR4/CXCR7 dans l’augmentation de la couverture péricytaire et tester des inhibiteurs de cette voie dans des modèles précliniques d’hypertension pulmonaire (HP) ; 3) Etudier l’impact du pouvoir mésenchymateux des péricytes dans le remodelage vasculaire pulmonaire associé à l’HTAP.Nos données ont permis d’une part de démontrer que les péricytes provenant de patients HTAP possédent des défauts intrinsèques dans les mécanismes de prolifération, de migration et de différenciation cellulaire et que la voie du CXCL12 contribue fortement à l’augmentation anormale de la couverture péricytaire autour des vaisseaux remodelés de patients HTAP. D’autre part, via leur capacité à se différencier en cellules contractiles, nous avons pu démontrer que les péricytes contribuaient directement au remodelage vasculaire pulmonaire.En conclusion, notre étude montre ainsi l’importance du rôle des péricytes pulmonaires dans la progression de l’hypertension artérielle pulmonaire humaine et expérimentale. / Pericytes (PCs) are strongly suspected to play a determining role in the pathophysiology of pulmonary arterial hypertension (PAH), because of their position and distribution, role in vascular homeostasis, versatility and tissue-specificity, but also because they accumulate around remodeled pulmonary arterioles in PAH. However, the underlying mechanisms and their dynamic role in PAH are still unknown. Furthermore, we do not know whether pulmonary PCs are phenotypically and functionally altered in PAH. To answer these questions, our objective were: 1) To examine the phenotypic and functional characteristics of human pulmonary PCs derived from control and PAH patients; 2) To precise the role of the intrinsic abnormalities in the altered phenotype of pulmonary PCs in PAH; 3) To study the dynamic role(s) of pulmonary PCs in preclinical PAH models, especially through modulation of the CXCL12/CXCR4/CXCR7 signaling pathway. Taken together, our findings identify for the first time phenotypic and functional abnormalities of pulmonary PCs in PAH with pathogenetic significance since they increased directly their proliferation, migration and capacity to differentiate in smooth muscle-like cells.
|
6 |
The Role of Fibro-Adipogenic Progenitors in Radiation-Induced Muscle PathologyCollao, Nicolás 21 December 2023 (has links)
Globally, cancer is one of the leading causes of mortality, with an estimated 18.1 million cancer cases, 10 million deaths, and 1.9 million new cases diagnosed in 2020 (Sung et al., 2021). However, during the past several decades, cancer survival has improved such that 82% of children and >2/3 of adults diagnosed with cancer will survive beyond five years (World Health Organization (WHO) - Childhood Cancer, 2021). Skeletal muscle atrophy and fibrosis are long-term adverse effects experienced by 80% of cancer survivors for which there is no available therapy (Paulino, 2004). These long-term consequences are related to the toxicity from the cancer treatment, leading to alterations in skeletal muscle function which can lead to comorbidities and increased mortality among cancer survivors (Paulino, 2004; Williams et al., 2016). Thus, novel approaches to address the long-term effects of cancer therapy on skeletal muscle are critically needed. Exercise training is a potential non-pharmacological strategy that improves common cancer- and treatment-related side effects (Mustian et al., 2012). Specifically, exercise programs that combine resistance and endurance training (RET) have been shown to improve muscle strength and cardiovascular fitness in cancer survivors (Tong et al., 2020). The mechanisms responsible for these effects remain unknown.
The remarkable plasticity of skeletal muscle relies primarily on muscle stem (satellite) cells (MuSCs) (Lepper et al., 2011) that are regulated, in part, by muscle-resident stromal cells (Bentzinger et al., 2013). These different stromal cell types, including: vascular endothelial cells (ECs), immune cells, and mesenchymal progenitors, also known as fibro-adipogenic progenitors (FAPs), create the muscle stem cell niche (Yin et al., 2013). FAPs possess a dual role as they are involved in skeletal muscle maintenance and regeneration by secreting pro-myogenic trophic factors (Biferali et al., 2019; Joe et al., 2010; Uezumi et al., 2010; Wosczyna et al., 2019), but also contribute to fibrotic and fatty tissue accumulation in chronic degenerative conditions (Uezumi et al., 2010). The divergent features of FAPs highly depend on signals they receive from their microenvironment (Giuliani et al., 2021); however, FAP's contribution to cancer treatment-induced muscle pathology in cancer survivors remains unknown. The overall objective of this thesis is to begin to develop an understanding of the role of FAPs in cancer treatment-induced muscle pathology and to determine if RET represents an effective therapy to prevent the long-term muscle defects of juvenile cancer plus therapy.
|
Page generated in 0.0536 seconds