• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse de l’initiation de fissures en fatigue de contact : Approche mésoscopique / Analysis of crack initiation in rolling contact fatigue : A mesoscopic approach

Noyel, Jean-Philippe 09 December 2015 (has links)
La fatigue de contact est un des modes de défaillance prédominants des composants tels que les engrenages ou les roulements. Les mécanismes d’initiation de fissures associés à ce mode de défaillance sont fortement liés à la microstructure du matériau. Cependant, la plupart des modèles utilisés pour prédire la durée de vie se situent à l’échelle macroscopique. Un modèle basé sur une représentation de type Voronoi des grains (échelle mésoscopique) est développé afin d’analyser les mécanismes d’initiation. Le concept d’endommagement est appliqué aux joints de grain modélisés par la méthode des zones cohésives. L’objectif de ce modèle est (i) de contribuer à une meilleure compréhension de l’influence de paramètres tels que ceux liés aux conditions de contact (rugosité, lubrification) ou aux matériaux (présence d’inclusions ou gradients de propriétés et contraintes résiduelles générés par les traitements de surface…) sur les mécanismes d’initiation et (ii) de fournir une estimation de la durée de vie jusqu’à cette initiation. Un premier modèle 2D isotrope a permis de mettre en place l’approche proposée et d’analyser le comportement numérique des éléments cohésifs : influence de la valeur des raideurs cohésives et apparition de singularités aux jonctions triples. Cette singularité semble inévitable, mais l’approche consistant à considérer le joint de grain comme une unique entité, et donc à utiliser des valeurs moyennes le long du joint de grain permet de s’affranchir de cette singularité. La représentativité du modèle a ensuite été améliorée par la modélisation de l’anisotropie cristalline. Un modèle de type élasticité cubique a été utilisé pour modéliser le comportement des grains. Enfin, une analyse approfondie de l’application du concept d’endommagement aux joints de grains a permis de proposer une nouvelle formulation entraînant une influence plus réaliste de cet endommagement sur le cisaillement intergranulaire et conduisant à une durée de vie estimée (apparition des premières micro-fissures) d’un ordre de grandeur comparable à celles données par l’expérience. / Contact fatigue is the predominant mode of failure of components subjected to a repeated contact pressure, like rolling element bearings or gears. This phenomenon is known as rolling contact fatigue (RCF). A large number of models have been developed to predict RCF, but there is today no complete predictive life model, and understanding RCF failure mechanism remains a significant challenge. RCF failure mechanisms are known to be very sensitive to a large number of parameters linked to contact conditions (roughness, lubrication) or materials (inclusions, gradients properties, residual stresses…). To improve knowledge about the influence of these parameters on failure mechanisms and life, a numerical model is developed to simulate the progressive damage of a component subject to rolling contact fatigue. Mechanisms associated with the initiation stage of failure process are located at a scale lower than the macroscopic scale. The proposed approach is to develop a grain level model (mesoscopic scale) in order to focus on initiation mechanisms. A Voronoi tessellation is used to represent the material microstructure. The progressive deterioration is simulated by applying the concept of damage mechanics at grain boundaries represented by cohesive elements. This approach has been first applied to a 2D isotropic model. The numerical behaviour of cohesive elements has been investigated: the influence of cohesive stiffness has been analysed and singularities at the triple junctions has been highlighted. The representativeness of the original model was improved by modelling crystal anisotropy. A cubic elasticity model was used to represent the behaviour of grains. Finally, a thorough analysis of the application of the damage concept at grain boundaries highlighted that the initial formulation results in a very low influence of the damage on the intergranular shear stress. A new formulation leading to a direct influence of the damage on the intergranular shear stress has been proposed. This new formulation has resulted in (i) a change in the distribution of micro-cracks, with coalescence between the different micro-cracks, and (ii) a large increase in the RCF life estimated by the model. The order of magnitude of the number of cycles corresponding to the first micro-cracks is comparable to that given by experiments.
2

Simulation à l'échelle mésoscopique de la mise en forme de renforts de composites tissés / Mesoscopic simulation of weaving composite reinforcements forming

Wendling, Audrey 04 September 2013 (has links)
De nos jours, l’intégration de pièces composites dans les produits intéresse de plus en plus les industriels, particulièrement dans le domaine des transports. En effet, ces matériaux présentent de nombreux avantages, notamment celui de permettre une diminution de la masse des pièces lorsqu’ils sont correctement exploités. Pour concevoir ces pièces, plusieurs procédés peuvent être utilisés, parmi lesquels le RTM (Resin Transfer Molding) qui consiste en la mise en forme d’un renfort sec (préformage) avant une étape d’injection de résine. Cette étude concerne la première étape du procédé RTM, celle de préformage. L’objectif est de mettre en œuvre une stratégie efficace conduisant à la simulation par éléments finis de la mise en forme des renforts à l’échelle mésoscopique. A cette échelle, le renfort fibreux est modélisé par un enchevêtrement de mèches supposées homogènes. Plusieurs étapes sont alors nécessaires et donc étudiées ici pour atteindre cet objectif. La première consiste à créer un modèle géométrique 3D le plus réaliste possible des cellules élémentaires des renforts considérés. Elle est réalisée grâce à la mise en œuvre d’une stratégie itérative basée sur deux propriétés. D’une part, la cohérence, qui permet d’assurer une bonne description du contact entre les mèches, c'est-à-dire, que le modèle ne contient ni vides ni interpénétrations au niveau de la zone de contact. D’autre part, la variation de la forme des sections de la mèche le long de sa trajectoire qui permet de coller au mieux à la géométrie évolutive des mèches dans le renfort. Grâce à ce modèle et à une définition libre par l’utilisateur de l’architecture tissée, un modèle représentatif de tout type de renfort (2D, interlock) peut être obtenu. La seconde étape consiste à créer un maillage hexaédrique 3D cohérant de ces cellules élémentaires. Basé sur la géométrie obtenue à la première étape. L’outil de maillage créé permet de mailler automatiquement tout type de mèche, quelle que soit sa trajectoire et la forme de ses sections. La troisième étape à franchir consiste, à partir du comportement mécanique du matériau constitutif des fibres et de la structure de la mèche, à mettre en place une loi de comportement du matériau homogène équivalent à un matériau fibreux. Basé sur les récents développements expérimentaux et numériques en matière de loi de comportement de structures fibreuses, un nouveau modèle de comportement est présenté et implémenté. Enfin, une étude des différents paramètres intervenant dans les calculs en dynamique explicite est réalisée. Ces deux derniers points permettent à la fois de faire converger rapidement les calculs et de se rapprocher de la réalité de la déformation des renforts. L’ensemble de la chaîne de modélisation/simulation des renforts fibreux à l’échelle mésoscopique ainsi créée est validée par comparaison d’essais numériques et expérimentaux de renforts sous sollicitations simples. / Nowadays, manufacturers, especially in transport, are increasingly interested in integrating composite parts into their products. These materials have, indeed, many benefits, among which allowing parts mass reduction when properly operated. In order to manufacture these parts, several methods can be used, including the RTM (Resin Transfer Molding) process which consists in forming a dry reinforcement (preform) before a resin being injected. This study deals with the first stage of the RTM process, which is the preforming step. It aims to implement an efficient strategy leading to the finite element simulation of fibrous reinforcements at mesoscopic scale. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous and continuous. Several steps are then necessary and therefore considered here to achieve this goal. The first consists in creating a 3D geometrical model of unit cells as realistic as possible. It is achieved through the implementation of an iterative strategy based on two main properties. On the one hand, consistency, which ensures a good description of the contact between the yarns, that is to say, the model does not contain spurious spaces or interpenetrations at the contact area. On the other hand, the variation of the yarn section shape along its trajectory that enables to stick as much as possible to the evolutive shape of the yarn inside the reinforcement. Using this tool and a woven architecture freely implementable by the user, a model representative of any type of reinforcement (2D, interlock) can be obtained. The second step consists in creating a 3D consistent hexahedral mesh of these unit cells. Based on the geometrical model obtained in the first step, the meshing tool enables to mesh any type of yarn, whatever its trajectory or section shape. The third step consists in establishing a constitutive equation of the homogeneous material equivalent to a fibrous material from the mechanical behavior of the constituent material of fibers and the structure of the yarn. Based on recent experimental and numerical developments in the mechanical behavior of fibrous structures, a new constitutive law is presented and implemented. Finally, a study of the different parameters involved in the dynamic/explicit scheme is performed. These last two points allow both to a quick convergence of the calculations and approach the reality of the deformation of reinforcements. The entire chain modeling/simulation of fibrous reinforcements at mesoscopic scale created is validated by numerical and experimental comparison tests of reinforcements under simple loadings.
3

Approches hyperélastiques pour la modélisation du comportement mécanique de préformes tissées de composites / Hyperelastic approaches to model the mechanical behaviour of woven preforms of composites

Charmetant, Adrien 13 December 2011 (has links)
La simulation des procédés de mise en forme des composites à renforts tissés de type RTM est un enjeu majeur pour les industries de pointe mettant en œuvre ce type de matériaux. Au cours de ces procédés, la préforme tissée est souvent soumise à des déformations importantes. La connaissance et la simulation du comportement mécanique de la préforme à l’échelle macroscopique et à l’échelle mésoscopique s’avère souvent nécessaire pour optimiser la phase de conception de pièces composites formées par de tels procédés. Une analyse du comportement mésoscopique des préformes tissées de composites est d’abord proposée. Une loi de comportement hyperélastique isotrope transverse est développée, permettant de décrire le comportement mécanique de chacun des modes de déformation de la mèche : élongation dans la direction des fibres, compaction et distorsion dans le plan d’isotropie de la mèche, cisaillement le long des fibres. Une méthodologie est proposée pour identifier les paramètres de cette loi de comportement à l’aide d’essais sur la mèche et sur le tissu, et une validation par comparaison avec des essais expérimentaux est présentée. Une analyse du comportement macroscopique des renforts interlocks est ensuite proposée : une loi de comportement hyperélastique orthotrope est développée et implémentée. Cette loi, extension de la loi de comportement pour la mèche, est également basée sur une description phénoménologique des modes de déformation de la préforme. Une méthode d’identification des paramètres de cette loi de comportement est mise en œuvre, utilisant des essais expérimentaux classiques dans le contexte des renforts tissés (tension uniaxiale, compression, bias extension test, flexion). Cette seconde loi de comportement est validée par comparaison avec des essais de flexion et d’emboutissage hémisphérique. / Simulating the preforming stage of RTM-like fabric-reinforced composites manufactoring processes is a major stake for industries which use such materials. During such processes, the woven preform often undergoes finite deformations. Simulation methods are then required to optimize the conception of composites parts formed by RTM. An analysis of the mechanical behaviour of woven preforms at mesoscale is first presented. A transversely isotropic hyperelastic behaviour law is developped in order to describe the mechanical behaviour of each deformation mode of the yarn : elongation in the direction of fibres, compaction and distorsion in the transverse plane and along-fibres shear. An identification method is set up for this behaviour law which allows to compute its parameters by use of simple experimental tests on the yarn and on the fabric. The behaviour law is then validated by comparizon between simulations ans experimental tests. An analysis of the mechanical behaviour of interlock woven preforms at macroscale is the presented. An orthotropic hyperelastic behaviour law is developped and implemented as an extension of the behaviour law for the yarn. A phenomenological approach is also used to describe the mechanical behaviour of each deformation mode of the preform. An identification method is set up and put into place, based on tests well known in the field of fabric reinforcements : tensile test, crushing test, bias extension test, flexure test. A hemispherical stamping simulation is set up and compared to experiment for validation purpose.
4

Analyse et simulation du comportement anisotrope lors de la mise en forme de renforts tissés interlock / Analysis and simulation of anisotropic behavior for the preforming of 3D interlocks composite reinforcements

Orliac, Jean-Guillaume 27 November 2012 (has links)
Afin de pouvoir prédire le comportement des renforts de composites 3D interlock au cours d'un procédé de mise en forme, il est nécessaire de connaitre la position des mèches dans le renfort durant la phase de préformage du procédé. Les travaux présentés ici traitent de la simulation du préformage de renforts 3D épais à l'aide d'un élément fini hexaédrique semi-discret spécifique. En utilisant le principe des travaux virtuels, on distingue le travail interne virtuel dû à la tension des mèches des autres travaux virtuels. La raideur due aux tensions de mèches, qui constitue la contribution principale de la rigidité du matériau, est prise en compte à l'aide de barres incluses dans les éléments. Les rigidités dues aux autres sollicitations, comme la compression transverse, les cisaillements ou les frottements inter-mèches, sont décrites par un matériau continu additionnel. La combinaison de ce modèle discret du premier ordre et d'un matériau continu hyperélastique anisotrope dit du second ordre, pour formuler le comportement du matériau va permettre la simulation du préformage des renforts tissés épais. Conjointement aux travaux sur la simulation, des travaux expérimentaux pour l'identification des paramètres matériau de la loi de comportement ont été définis et réalisés. Ces paramètres concernent les deux parties de la formulation du comportement. / In order to simulate 3D interlock composite reinforcement behavior during forming process, it is necessary to predict yarns positions in the fabric during the preforming stage of the process. The present work deals with thick 3D interlock fabric forming simulation using specific hexahedral semi-discrete finite elements. Using the virtual work principle, we distinguish the virtual internal work due to tensions in yarns from other internal virtual works. The stiffness relative to yarns tension which is the main part of the rigidity is described by bars within the elements. The other rigidities - like transverse compression, shears or friction between yarns - are depicted by a continuous additional material. A combination of this "first order" discrete model and a continuous orthotropic hyperelastic "second order" material formulation will enable us to simulate the interlock preforming process. Jointly to the simulation work, we also had to specify and perform experimental testing identification of material parameters. These parameters concern both parts of the model.
5

Modélisation numérique du procédé de tissage des renforts fibreux pour matériaux composites / Numerical modelling of the weaving process for textile composite

Vilfayeau, Jérôme 13 March 2014 (has links)
L'industrie aéronautique doit faire face aux nouvelles exigences environnementales, tout particulièrement concernant la réduction de la consommation des énergies fossiles. L'utilisation de matériaux composites plus léger permet de répondre en partie à cette attente. Pour limiter les coûts lors de la fabrication et du développement des composites à renforts tissés 3D, il est nécessaire d'utiliser des outils de simulation performants. En particulier, les outils existants, qui discrétisent à une échelle mésoscopique l'architecture des tissus 3D, ne tiennent pas compte de l'influence du procédé de fabrication sur la constitution de la structure textile. Si des outils numériques dédiés à la modélisation du procédé de tressage et de tricotage sont disponibles, il n'en est rien concernant le tissage. Cette étude avait donc pour but de s'intéresser plus particulièrement à la simulation du prodécé de tissage pour pouvoir obtenir une structure de tissu sèche déformée numériquement. La production de différentes architectures de tissu en verre E dans notre laboratoire nous a permis d'observer les différents éléments en contact avec le fil ou le tissu sur la machine à tisser, par le biais de l'utilisation d'une caméra rapide par exemple. Le développement d'un modèle numérique par éléments finis reproduisant le procédé de tissage a été réalisé. Une loi de comportement isotrope transverse fut utilisée pour modéliser les fils de verre. Des premières simulations numériques encourageantes pour la fabrication d'un tissu d'armure toile et d'un tissu d'armure croisé 2-2 sont présentées et comparées avec les tissus réels produits correspondants. / The aeronautical industry faces new challenges regarding the reduction of fossil fuel consumption. One way to address this issue is to use lighter composite materials. The ability to predict the geometry and the mechanical properties of the unit cell is necessary in order to develop 3D reinforcements in composite materials for these aeronautical applications. There is a difficulty to get realistic geometries for these unit cells due to the complexity of their architecture. Currently, existing tools which model 3D fabrics at a meso scale don't take into account manufacturing process influence on the shape modification of the textile structure. There is already some numerical tools that can model the braiding or knitting process, but none have been developed for weaving so far. Consequently, this study deals with the numerical simulation of the weaving process to obtain a deformed dry fabric structure. During the weaving process of E-glass fabrics, achieved in our laboratory, it has been observed that large deformations led to the modification of transverse section of meshes, or local density changes, that can modify the fabrics mechanical resistance. For this reason, a numerical tool of the weaving process, based on finite element modelling, has been developped to predict these major deformations and their influences on the final textile structure. The correlation between numerical results and fabrics produced with glass fibres has been achieved for plain weave and 2-2 twill.

Page generated in 0.0586 seconds