• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compile- and run-time approaches for the selection of efficient data structures for dynamic graph analysis

Schiller, Benjamin, Deusser, Clemens, Castrillon, Jeronimo, Strufe, Thorsten 11 January 2017 (has links) (PDF)
Graphs are used to model a wide range of systems from different disciplines including social network analysis, biology, and big data processing. When analyzing these constantly changing dynamic graphs at a high frequency, performance is the main concern. Depending on the graph size and structure, update frequency, and read accesses of the analysis, the use of different data structures can yield great performance variations. Even for expert programmers, it is not always obvious, which data structure is the best choice for a given scenario. In previous work, we presented an approach for handling the selection of the most efficient data structures automatically using a compile-time approach well-suited for constant workloads. We extend this work with a measurement study of seven data structures and use the results to fit actual cost estimation functions. In addition, we evaluate our approach for the computations of seven different graph metrics. In analyses of real-world dynamic graphs with a constant workload, our approach achieves a speedup of up to 5.4× compared to basic data structure configurations. Such a compile-time based approach cannot yield optimal results when the behavior of the system changes later and the workload becomes non-constant. To close this gap we present a run-time approach which provides live profiling and facilitates automatic exchanges of data structures during execution. We analyze the performance of this approach using an artificial, non-constant workload where our approach achieves speedups of up to 7.3× compared to basic configurations.
2

Compile- and run-time approaches for the selection of efficient data structures for dynamic graph analysis

Schiller, Benjamin, Deusser, Clemens, Castrillon, Jeronimo, Strufe, Thorsten 11 January 2017 (has links)
Graphs are used to model a wide range of systems from different disciplines including social network analysis, biology, and big data processing. When analyzing these constantly changing dynamic graphs at a high frequency, performance is the main concern. Depending on the graph size and structure, update frequency, and read accesses of the analysis, the use of different data structures can yield great performance variations. Even for expert programmers, it is not always obvious, which data structure is the best choice for a given scenario. In previous work, we presented an approach for handling the selection of the most efficient data structures automatically using a compile-time approach well-suited for constant workloads. We extend this work with a measurement study of seven data structures and use the results to fit actual cost estimation functions. In addition, we evaluate our approach for the computations of seven different graph metrics. In analyses of real-world dynamic graphs with a constant workload, our approach achieves a speedup of up to 5.4× compared to basic data structure configurations. Such a compile-time based approach cannot yield optimal results when the behavior of the system changes later and the workload becomes non-constant. To close this gap we present a run-time approach which provides live profiling and facilitates automatic exchanges of data structures during execution. We analyze the performance of this approach using an artificial, non-constant workload where our approach achieves speedups of up to 7.3× compared to basic configurations.

Page generated in 0.0357 seconds