• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 20
  • 7
  • 7
  • 4
  • 1
  • Tagged with
  • 135
  • 135
  • 44
  • 25
  • 24
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat / Theory and applications of polyphasic dispersed systems to chemostat cellular cultures

Thierie, Jacques 05 September 2005 (has links)
Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus (de production, par exemple).<p><p>Dans l’énorme majorité des cas, lorsque les cellules (procaryotes ou eucaryotes) mises en jeu dans ces systèmes sont en suspension, le formalisme de ces modèles non structurés traite le système comme s’il était homogène. Or, en toute rigueur, il est clair que cette approche n’est qu’une approximation et que nous avons à faire à des phénomènes hétérogènes, formés de plusieurs phases (solide, liquide, gazeuse) intimement mélangées. Nous désignons ces systèmes comme « polyphasiques dispersés » (SPD). Ce sont des systèmes thermodynami-quement instables, (presque) toujours ouverts.<p><p>La démarche que nous avons entreprise consiste à examiner si le fait de considérer des systèmes dits « homogènes » comme des systèmes hétérogènes (ce qu’ils sont en réalité) apporte, malgré une complication du traitement mathématique, un complément d’information significatif et pertinent. <p><p>La démarche s’est faite en deux temps :<p>·\ / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
132

Identification de facteurs de transcription régulateurs de la voie de biosynthèse des alcaloïdes indoliques monoterpéniques chez Catharanthus roseus / Identification of transcription factors regulating the biosynthesis pathway of monoterpene indole alkaloids in catharanthus roseus

Ginis, Olivia 08 June 2012 (has links)
Catharanthus roseus est une plante tropicale qui produit spécifiquement des alcaloïdes indoliques monoterpéniques (AIM) d’intérêt thérapeutique. Chez C. roseus, la branche terpénique incluant la voie du méthylérythritol phosphate (MEP) est considérée comme limitante et présente une régulation transcriptionnelle coordonnée en réponse aux hormones inductrices de l’accumulation alcaloïdique. Lors de ce travail, suite à des analyses bioinformatiques et à la caractérisation de promoteurs de gènes de la voie MEP, nous avons identifié de nouvelles familles de facteurs de transcription impliquées dans la régulation de la biosynthèse des AIM. Des membres de la famille des ZCT, des WRKY et des RR type B interagissent avec le promoteur du gène hds de la voie MEP et régulent son activité. Ces travaux ont permis d’approfondir les connaissances sur les réseaux transcriptionnels régulateurs de la biosynthèse des AIM. L’utilisation de ces nouveaux facteurs de transcription activateurs peut désormais être envisagée dans le cadre d’expériences d’ingénierie métabolique afin d’augmenter l’accumulation d’alcaloïdes d’intérêt pharmaceutique chez C. roseus. / Catharanthus roseus is a tropical plant producing specifically monoterpene indole alkaloids (MIA) of high interest due to their therapeutical values. In C. roseus cells, the terpenoid branch including the methyl erythritol phosphate pathway (MEP) provides the MIA terpenoid moiety and is regarded as limited for MIA biosynthesis. This branch presents a coordinated transcriptional regulation in response to hormonal signals leading to MIA production. In this context, bioinformatic analysises and functional characterization of MEP pathway gene promoters allowed the identification of new transcription factor families involved in the MIA pathway regulation. Members of ZCT proteins, WRKY and type B RR families specifically interact with the hds promoter from the MEP pathway and regulate its activity. This work permits to gain into insight the transcriptional network controlling the MIA biosynthesis. It is possible now to consider using transcription factor that act as activators and target genes from the terpenoid branch to increase the accumulation of alkaloids of pharmaceutical interest in C. roseus by metabolic engineering approaches.
133

Improving photofermentative hydrogen production through metabolic engineering and DOE (Design of Experiments)

Liu, Yuan 03 1900 (has links)
A l’heure actuelle, les biocarburants renouvelables et qui ne nuit pas à l'environnement sont à l'étude intensive en raison de l'augmentation des problèmes de santé et de la diminution des combustibles fossiles. H2 est l'un des candidats les plus prometteurs en raison de ses caractéristiques uniques, telles que la densité d'énergie élevée et la génération faible ou inexistante de polluants. Une façon attrayante pour produire la H2 est par les bactéries photosynthétiques qui peuvent capter l'énergie lumineuse pour actionner la production H2 avec leur système de nitrogénase. L'objectif principal de cette étude était d'améliorer le rendement de H2 des bactéries photosynthétiques pourpres non sulfureuses utilisant une combinaison de génie métabolique et le plan des expériences. Une hypothèse est que le rendement en H2 pourrait être améliorée par la redirection de flux de cycle du Calvin-Benson-Bassham envers du système de nitrogénase qui catalyse la réduction des protons en H2. Ainsi, un PRK, phosphoribulose kinase, mutant « knock-out » de Rhodobacter capsulatus JP91 a été créé. L’analyse de la croissance sur des différentes sources de carbone a montré que ce mutant ne peut croître qu’avec l’acétate, sans toutefois produire d' H2. Un mutant spontané, YL1, a été récupéré qui a retenu l'cbbP (codant pour PRK) mutation d'origine, mais qui avait acquis la capacité de se développer sur le glucose et produire H2. Une étude de la production H2 sous différents niveaux d'éclairage a montré que le rendement d’YL1 était de 20-40% supérieure à la souche type sauvage JP91. Cependant, il n'y avait pas d'amélioration notable du taux de production de H2. Une étude cinétique a montré que la croissance et la production d'hydrogène sont fortement liées avec des électrons à partir du glucose principalement dirigés vers la production de H2 et la formation de la biomasse. Sous des intensités lumineuses faibles à intermédiaires, la production d'acides organiques est importante, ce qui suggère une nouvelle amélioration additionnel du rendement H2 pourrait être possible grâce à l'optimisation des processus. Dans une série d'expériences associées, un autre mutant spontané, YL2, qui a un phénotype similaire à YL1, a été testé pour la croissance dans un milieu contenant de l'ammonium. Les résultats ont montré que YL2 ne peut croître que avec de l'acétate comme source de carbone, encore une fois, sans produire de H2. Une incubation prolongée dans les milieux qui ne supportent pas la croissance de YL2 a permis l'isolement de deux mutants spontanés secondaires intéressants, YL3 et YL4. L'analyse par empreint du pied Western a montré que les deux souches ont, dans une gamme de concentrations d'ammonium, l'expression constitutive de la nitrogénase. Les génomes d’YL2, YL3 et YL4 ont été séquencés afin de trouver les mutations responsables de ce phénomène. Fait intéressant, les mutations de nifA1 et nifA2 ont été trouvés dans les deux YL3 et YL4. Il est probable qu'un changement conformationnel de NifA modifie l'interaction protéine-protéine entre NifA et PII protéines (telles que GlnB ou GlnK), lui permettant d'échapper à la régulation par l'ammonium, et donc d'être capable d'activer la transcription de la nitrogénase en présence d'ammonium. On ignore comment le nitrogénase synthétisé est capable de maintenir son activité parce qu’en théorie, il devrait également être soumis à une régulation post-traductionnelle par ammonium. Une autre preuve pourrait être obtenue par l'étude du transcriptome d’YL3 et YL4. Une première étude sur la production d’ H2 par YL3 et YL4 ont montré qu'ils sont capables d’une beaucoup plus grande production d'hydrogène que JP91 en milieu d'ammonium, qui ouvre la porte pour les études futures avec ces souches en utilisant des déchets contenant de l'ammonium en tant que substrats. Enfin, le reformage biologique de l'éthanol à H2 avec la bactérie photosynthétique, Rhodopseudomonas palustris CGA009 a été examiné. La production d'éthanol avec fermentation utilisant des ressources renouvelables microbiennes a été traitée comme une technique mature. Cependant, la plupart des études du reformage de l'éthanol à H2 se sont concentrés sur le reformage chimique à la vapeur, ce qui nécessite généralement une haute charge énergetique et résultats dans les émissions de gaz toxiques. Ainsi le reformage biologique de l'éthanol à H2 avec des bactéries photosynthétiques, qui peuvent capturer la lumière pour répondre aux besoins énergétiques de cette réaction, semble d’être plus prometteuse. Une étude précédente a démontré la production d'hydrogène à partir d'éthanol, toutefois, le rendement ou la durée de cette réaction n'a pas été examiné. Une analyse RSM (méthode de surface de réponse) a été réalisée dans laquelle les concentrations de trois facteurs principaux, l'intensité lumineuse, de l'éthanol et du glutamate ont été variés. Nos résultats ont montré que près de 2 moles de H2 peuvent être obtenus à partir d'une mole d'éthanol, 33% de ce qui est théoriquement possible. / Currently, renewable and environmentally friendly biofuels are under intensive study due to increasing health concerns and diminishing fossil fuels. H2 is one of the most promising candidates due to its unique characteristics, such as a high energy density and low to non-existent generation of pollutants. One attractive way to produce H2 is through photosynthetic bacteria which can capture light energy to drive H2 production with their nitrogenase system. The major aim of this study was to improve H2 yield of the purple non-sulfur photosynthetic bacteria using a combination of metabolic engineering and design of experiments. One hypothesis was that H2 yield could be improved by redirection of Calvin-Benson-Bassham cycle flux to the nitrogenase system which catalyzes the reduction of protons to H2. Thus, a PRK, phosphoribulose kinase, knock out mutant of Rhodobacter capsulatus JP91 was created. Analysis of growth with different carbon sources showed that this mutant could only grow in acetate medium without, however, producing any H2. A spontaneous mutant, YL1, was recovered which retained the original cbbP (encoding PRK) mutation, but which had gained the ability to grow on glucose and produce H2. A study of H2 production under different illumination levels showed that the yield of YL1 was 20-40% greater than the wild type JP91 strain. However, there was no appreciable improvement of the H2 production rate. A kinetic study showed that growth and hydrogen production are strongly linked with electrons from glucose being mostly directed to H2 production and biomass formation. Under low to intermediate light intensities, the production of organic acids was significant, suggesting further improvement of H2 yield is possible by process optimization. In a related series of experiments, another spontaneous mutant, YL2, which has a similar phenotype to YL1, was tested for growth in ammonium-containing media. The results showed that YL2 could only grow with acetate as carbon source, again, without producing any H2. Prolonged incubation in media not supporting growth of YL2 enabled the isolation of two interesting secondary spontaneous mutants, YL3 and YL4. Western blot analysis showed that both strains had constitutive nitrogenase expression under a range of ammonium concentrations. The genomes of YL2, YL3 and YL4 were sequenced in order to find the mutations responsible for this phenomenon. Interestingly, mutations of nifA1 and nifA2 were found in both YL3 and YL4. It is likely that a conformational change of NifA alters the protein-protein interaction between NifA and PII proteins (such as GlnB or GlnK), enabling it to escape regulation by ammonium and thus to be capable of activating nitrogenase transcription in the presence of ammonium. It is not clear how the synthesized nitrogenase is able to maintain its activity since in theory it should also be subject to posttranslational regulation by ammonium. Further evidence could be obtained by studying the transcriptome of YL3 and YL4. An initial study of H2 production by YL3 and YL4 showed that they are capable of much greater hydrogen production than JP91 in ammonium medium, which opens the door for future studies with these strains using ammonium-containing wastes as substrates. Finally, the biological reformation of ethanol to H2 with the photosynthetic bacterium, Rhodopseudomonas palustris CGA009 was examined. Ethanol production with microbial fermentation using renewable resources has been treated as a mature technique. However, most studies of the reformation of ethanol to H2 have focused on chemical steam reforming, which usually requires a high energy input and results in toxic gas emission. Thus biological reformation of ethanol to H2 with photosynthetic bacteria, which can capture light to meet the energy requirement of this reaction, seems to be more promising. A previous study had demonstrated hydrogen production from ethanol, however, the yield or the duration of this reaction were not examined. A RSM (response surface methodology) analysis was carried out in which three key factors, light intensity, ethanol and glutamate concentrations were varied. Our results showed that nearly 2 moles of H2 could be obtained from one mole of ethanol, 33% of what is theoretically possible.
134

Gene expression control for synthetic patterning of bacterial populations and plants

Boehm, Christian Reiner January 2017 (has links)
The development of shape in multicellular organisms has intrigued human minds for millenia. Empowered by modern genetic techniques, molecular biologists are now striving to not only dissect developmental processes, but to exploit their modularity for the design of custom living systems used in bioproduction, remediation, and regenerative medicine. Currently, our capacity to harness this potential is fundamentally limited by a lack of spatiotemporal control over gene expression in multicellular systems. While several synthetic genetic circuits for control of multicellular patterning have been reported, hierarchical induction of gene expression domains has received little attention from synthetic biologists, despite its fundamental role in biological self-organization. In this thesis, I introduce the first synthetic genetic system implementing population-based AND logic for programmed hierarchical patterning of bacterial populations of Escherichia coli, and address fundamental prerequisites for implementation of an analogous genetic circuit into the emergent multicellular plant model Marchantia polymorpha. In both model systems, I explore the use of bacteriophage T7 RNA polymerase as a gene expression engine to control synthetic patterning across populations of cells. In E. coli, I developed a ratiometric assay of bacteriophage T7 RNA polymerase activity, which I used to systematically characterize different intact and split enzyme variants. I utilized the best-performing variant to build a three-color patterning system responsive to two different homoserine lactones. I validated the AND gate-like behavior of this system both in cell suspension and in surface culture. Then, I used the synthetic circuit in a membrane-based spatial assay to demonstrate programmed hierarchical patterning of gene expression across bacterial populations. To prepare the adaption of bacteriophage T7 RNA polymerase-driven synthetic patterning from the prokaryote E. coli to the eukaryote M. polymorpha, I developed a toolbox of genetic elements for spatial gene expression control in the liverwort: I analyzed codon usage across the transcriptome of M. polymorpha, and used insights gained to design codon-optimized fluorescent reporters successfully expressed from its nuclear and chloroplast genomes. For targeting of bacteriophage T7 RNA polymerase to these cellular compartments, I functionally validated nuclear localization signals and chloroplast transit peptides. For spatiotemporal control of bacteriophage T7 RNA polymerase in M. polymorpha, I characterized spatially restricted and inducible promoters. For facilitated posttranscriptional processing of target transcripts, I functionally validated viral enhancer sequences in M. polymorpha. Taking advantage of this genetic toolbox, I introduced inducible nuclear-targeted bacteriophage T7 RNA polymerase into M. polymorpha. I showed implementation of the bacteriophage T7 RNA polymerase/PT7 expression system accompanied by hypermethylation of its target nuclear transgene. My observations suggest operation of efficient epigenetic gene silencing in M. polymorpha, and guide future efforts in chassis engineering of this multicellular plant model. Furthermore, my results encourage utilization of spatiotemporally controlled bacteriophage T7 RNA polymerase as a targeted silencing system for functional genomic studies and morphogenetic engineering in the liverwort. Taken together, the work presented enhances our capacity for spatiotemporal gene expression control in bacterial populations and plants, facilitating future efforts in synthetic morphogenesis for applications in synthetic biology and metabolic engineering.
135

A design of experiments approach for engineering carbon metabolism in the yeast Saccharomyces cerevisiae

Brown, Steven Richard January 2016 (has links)
The proven ability to ferment Saccharomyces cerevisiae on a large scale presents an attractive target for producing chemicals and fuels from sustainable sources. Efficient and predominant carbon flux through to ethanol is a significant engineering issue in the development of this yeast as a multi-product cell chassis used in biorefineries. In order to evaluate diversion of carbon flux away from ethanol, combinatorial deletions were investigated in genes encoding the six isozymes of alcohol dehydrogenase (ADH), which catalyse the terminal step in ethanol production. The scarless, dominant and counter- selectable amdSYM gene deletion method was optimised for generation of a combinatorial ADH knockout library in an industrially relevant strain of S. cerevisiae. Current understanding of the individual ADH genes fails to fully evaluate genotype-by-genotype and genotype-by-environment interactions: rather, further research of such a complex biological process requires a multivariate mathematical modelling approach. Application of such an approach using the Design of Experiments (DoE) methodology is appraised here as essential for detailed empirical evaluation of complex systems. DoE provided empirical evidence that in S. cerevisiae: i) the ADH2 gene is not associated with producing ethanol under anaerobic culture conditions in combination with 25 g l-1 glucose substrate concentrations; ii) ADH4 is associated with increased ethanol production when the cell is confronted with a zinc-limited [1 μM] environment; and iii) ADH5 is linked with the production of ethanol, predominantly at pH 4.5. A successful metabolic engineering strategy is detailed which increases the product portfolio of S. cerevisiae, currently used for large-scale production of bioethanol. Heterologous expression of the cytochrome P450 fatty acid peroxygenase from Jeotgalicoccus sp., OleTJE, fused to the RhFRED reductase from Rhodococcus sp. NCIMB 978 converted free fatty acid precursors to C13, C15 and C17 alkenes (3.81 ng μl-1 total alkene concentration).

Page generated in 0.1584 seconds