• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 111
  • 68
  • 17
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 565
  • 110
  • 105
  • 101
  • 79
  • 64
  • 63
  • 57
  • 54
  • 53
  • 47
  • 46
  • 45
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Urinary Metabolomic Signature of Pancreatic Ductal Adenocarcinoma

Davis, Vanessa W Unknown Date
No description available.
42

Stress responses of Arabidopsis plants with a varying level of non-photochemical quenching / Stressresponser i Arabidopsis med olika kapacitet för ”icke-fotokemisk" quenching

Johansson Jänkänpää, Hanna January 2011 (has links)
When light energy input exceeds the capacity for photosynthesis the plant need to dissipate the excess energy and this is done through non-photo-chemical quenching (NPQ). Photochemical quenching (photosynthesis), NPQ and fluorescence are three alternative faiths of excited chlorophylls. PsbS associates to photosystem II and is involved in NPQ. The results presented in this thesis were generated on Arabidopsis plants and mainly based on wildtype Col-0 together with a mutant deficient in PsbS (npq4) and a transgene overexpressing PsbS (oePsbS). We connect light and herbivore stress and show that the level of PsbS influences the food preference of both a specialist (Plutella) and a generalist (Spodoptera) herbivore as well as oviposition of Plutella. Level of PsbS also affects both metabolomics and transcriptomics of the plant; up-regulation of genes in the jasmonic acid (JA) -pathway and amount of JA has been found in the npq4 plants after herbivory. Since many experiments were performed in field we have also characterized the field plant and how it differs from the commonly used lab plant. We have also studied the natural variation of NPQ in Arabidopsis plants both in the field and the lab. The results show surprisingly no correlation. / Överskottsenergi kan vara skadligt för en växts membran och fotosynteskomplex. Vid överskott av solenergi blir fotosystemen mättade och växten behöver därför ett sätt för att göra sig av med all överskottsenergi, detta kallas för ”icke-fotokemisk quenching” (NPQ). Fotokemisk quenching (fotosyntes), NPQ och fluoresens är tre alternativa vägar för exalterade klorofyller. PsbS är involverad i NPQ och associerar med fotosystem II. De resultat som presenteras i denna avhandling kommer från studier av modellväxten Arabidopsis thaliana (Backtrav), i huvudsak gjorda på vildtypen i jämförelse med en mutant som saknar PsbS (npq4) och en transgen som överuttrycker PsbS (oePsbS). Vi har försökt att undersöka kopplingen mellan ljus- och herbivoristress och visar här att mängden PsbS påverkar både en specialist (Plutella) och en generalist (Spodoptera) insekt vid val av föda, samt Plutella även vid äggläggning. Växternas nivå av PsbS visade sig även påverka metabolomet och transkriptomet, och vi fann en uppreglering av gener i biosyntesen för jasmonat samt mer av själva hormonet jasmonat i npq4 växter efter herbivori. Eftersom vi har gjort många av experimenten ute i fält har vi även karakteriserat en typisk Arabidopsis växt i fält samt hur denna skiljer sig från den vanligt använda lab-växten. Dessutom har vi även undersökt naturlig variation av NPQ av Arabidopsis både i fält och på lab och resultaten visar, till vår förvåning, att det inte går att finna någon korrelation mellan dessa.
43

Metallothionein involvement in mitochondrial function and disease : a metabolomics investigation / Jeremie Zander Lindeque

Lindeque, Jeremie Zander January 2011 (has links)
One of the many recorded adaptive responses in respiratory chain complex I deficient cells is the over-expression of the small metal binding proteins, metallothioneins (MTs). The antioxidant properties of MTs putatively protect the deficient cells against oxidative damage, thus limiting further damage and impairment of enzymes involved in energy production. Moreover, the role of metallothioneins in supplying metal cofactors to enzymes and transcription factors in order to promote energy metabolism was previously proposed, which could accompany their role as antioxidants. This view is supported by the observations that MT knockout mice tend to become moderately obese, implying a lower energy metabolic rate. Hence, the involvement of metallothioneins in mitochondrial function and disease cannot be ignored. However, this association is still very vague due to the diversity of their functions and the complexity of the mitochondrion. The use of systems biology technology and more specifically metabolomics technology was thus employed to clarify this association by investigating the metabolic differences between wild type and MT knockout mice in unchallenged conditions as well as when mitochondrial function (energy metabolism) was challenged with exercise and/or a high-fat diet. The metabolic differences between these mice were also studied when complex I of the respiratory chain was inhibited with rotenone. The metabolome content of different tissues and bio-fluids were examined in an untargeted fashion using three standardized analytical platforms and the data mined using modern metabolomics and related statistical methods. Clear metabolic differences were found between the wild type and MT knockout mice during unchallenged conditions. These metabolic differences were persisted and were often amplified when mitochondrial metabolism was specifically challenged through exercise, high-fat intake or complex I inhibition. The data pointed to an overall reduced metabolic rate in the MT knockout mice and possible insulin resistance after the interventions which imply (and confirm) the involvement of MTs in promoting energy metabolism in the wild type mice. / Thesis (Ph.D. (Biochemistry))--North-West University, Potchefstroom Campus, 2012
44

Application of ROC curve analysis to metabolomics data sets for the detection of cancer in a mouse model

Moroz, Jennifer 11 1900 (has links)
The goal of this study was to show that quantifiable metabolic changes may be used to screen for cancer. NIH III nude mice (n=22) were injected with human GBM cells, with daily urine samples collected pre and post-injection. 14 mice were injected with saline to serve as controls. The measurement of metabolite concentrations took place on an 800 MHz NMR spectrometer. 34 metabolites were identified and quantified, through targeted profiling, with Chenomx Suite 5.1. Univariate statistical analysis showed that 3 metabolites (2-oxoglutarate, glucose and trimethylamine n-oxide) were significantly altered in the presence of tumour, while PCA and PLS-DA models found the maximum variance between the healthy and tumour-bearing groups. Receiver operating characteristic (ROC) curve analysis was applied to the data set to provide a measure of clinical utility. ROC statistics were as high as 0.85 for the analysis of individual metabolites, 0.939 for the analysis of metabolite pairs and 0.996 for PLS-DA models. These results show that metabolomics has potential as a screening tool for cancer. / Medical Physics
45

The development of bio-analytical techniques for the treatment of psoriasis and related skin disorders

Hollywood, Katherine January 2010 (has links)
In this investigation a number of post-genomic technologies have be applied to study the dermatological disorders of psoriasis and keloid disease. In spite of considerable research focus on these diseases the pathogenesis remains unclear and currently no cure is available however, both diseases are manageable by drug intervention. It is common place that patients who are suffering from skin disorders are diagnosed and the extent of the disease assessed by a dermatologist which may be subjective due to human error. The availability and application of methods to screen patients and quantify the level of disease or response to treatment has obvious benefits in disease management. The work has incorporated a two-pronged approach combining the spectroscopic analysis of excised tissue samples and the phenotypic profiling of a rapidly proliferating cell line in response to drug intervention. The initial analysis of psoriatic skin samples by MALDI-MS provided poor results which remain relatively unexplained; however similar problems have been observed by other research groups. In a complementary approach the HaCaT cell line was exposed to increasing concentrations of three anti-psoriatic drugs namely dithranol, methotrexate and ciclosporin and the cells profiled using both metabolomic and proteomic methods. A number of metabolic pathways were highlighted including glycolysis and the TCA cycle. This has resulted in a selection of potential biomarkers which could be investigated in further work. In a small follow on study a collection of plasma samples from patients undergoing methotrexate treatment were analysed. The level of patient metadata and the number of samples was relatively limiting however, a subset of metabolites were significantly altered between responders and non-responders and with further validation could be potential biomarkers of successful treatment. The analysis of excised keloid samples was conducted using FT-IR microspectroscopy where it was possible to successfully discriminate between keloid and normal tissue. The use of imaging FTIR illustrated the complex cellular composition within a keloid scar, with increased lipid, amide and phosphate levels being observed. These measurable variations could, in the future, be incorporated into surgical procedures to allow targeted excision ensuring all keloid areas are removed. Finally a SERS-based analysis was conducted to investigate the possibility of probing dynamic enzymatic processes. This was successful and with the use of varying reporter molecules could be a beneficial tool for the analysis of metabolic processes.This project has successfully used a number of bio-analytical techniques to investigate dermatological problems. While the ultimate goal would be the application of a single analytical technique to provide answers to biological questions, it has been found that a number of complimentary techniques and statistical data handling approaches can provide a valuable insight into the problems posed.
46

Systems biology of HIF metabolism in cancer

Armitage, Emily Grace January 2012 (has links)
Cancer is one of the most devastating human diseases that cause a vast number of mortalities worldwide each year. Cancer research is one of the largest fields in the life sciences and despite many astounding breakthroughs and contributions over the past few decades, there is still a considerable amount to unveil on the function of cancer that would improve diagnostics, prognostics and therapy. Since cancer is known to involve a wide range of processes, applying methods to study it from a systems perspective could reveal new properties of cancer. Systems biology is becoming an increasingly popular tool in the life sciences. The approach has been applied to many biological and biomedical analyses drawing upon recent advancements in technology that make high throughput analyses of samples and computational modelling possible. In this thesis, the effect of hypoxia inducible factor-1 (HIF-1) on cancer metabolism, the entity considered most closely related to phenotype has been investigated. This transcription factor is known to regulate a multitude of genes and proteins to promote survival in a low oxygen environment that is prevalent in solid tumours. However its effect on the metabolome is less well characterised. By revealing the effect of HIF-1 on the metabolome as a system it is hoped that phenotypic signatures, key metabolic pathways indicative of cancer function and potential targets for future cancer therapy, can be revealed.The system has been studied using two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby metabolism has been profiled using a range of analytical platforms. In each model, wild type cells have been compared to cells deficient in HIF-1 to reveal its effect on cellular metabolism. Gas chromatography mass spectrometry (GC MS) and ultra high performance liquid chromatography - mass spectrometry (UHPLC MS) have been employed for metabolic profiling of cells exposed to a range of oxygen conditions. Additionally, time-of-flight secondary ion mass spectrometry (ToF SIMS) has been employed for imaging mass spectrometric analysis of multicellular tumour spheroids cultured from wild type cells and cells with dysfunctional HIF-1 to represent small initiating tumours. Using these techniques in metabolic profiling it has been possible to reveal metabolites associated with the effect of oxygen and HIF-1 on cancer metabolism along with key pathways and hubs that could be targeted in future therapy. Using imaging mass spectrometry it has been possible to localise metabolites in situ revealing how tumour structure relates to function. Finally, a novel approach to consider how metabolites are correlated with one another in the response to oxygen level or presence or absence of functional HIF-1 has been undertaken to better understand the systems properties of cancer metabolism. Metabolites found to be differently correlated with respect to oxygen and/or HIF-1 have been mapped onto a human metabolic network to determine their network-based origins. This allowed the simulation of sub-networks of metabolism most affected by oxygen and HIF-1, highlighting the key mechanisms in HIF 1 mediated cancer cell survival.
47

Epidemiology, genetic differences and clinical outcomes of antineutrophil cytoplasmic autoantibody associated systemic vasculitis

Dhaygude, Ajay January 2012 (has links)
Introduction: The two subtypes of Antineutrophil Cytoplasmic autoantibody associated systemic vasculitis (AASV) cANCA and pANCA associated vasculitis are the commonest causes of rapidly progressive glomerulonephritis. In spite of recent advances in the pathogenesis and development of new therapeutic agents, long term outcomes are still poor with five year mortality of 25%. There are epidemiological, histological, clinical and outcome related differences between these two conditions. This strongly suggests that there must be differences between genetic factors and pathogenesis of these two conditions. There was also a perception amongst the clinicians that AASV is more common in the Greater Manchester area. Hence in this study I calculated the incidence of pauciimmune glomerulonephritis in Greater Manchester and analysed the genetic differences between cANCA and pANCA associated vasculitis. Methods: Five year incidence of pauciimmune glomerulonephritis was calculated in Greater Manchester between 1/1/1999 to 31/12/2003. I recruited 147 patients with ANCA associated vasculitis. Clinical data was collected. I studied single nucleotide polymorphisms (SNPs) of tumour necrosis factor alpha(TNFα), interleukin 8 (IL-8), transforming growth factor beta (TGFβ), platelet endothelial cell adhesion molecule 1 (PECAM-1), Chemokine (CC motif) ligand-5 C chemokine (CCL-5), interleukin 10 (IL-10) and interleukin 18 (IL-18) genes and compared the frequencies of genotypes and alleles in patients with cANCA and pANCA associated small vessel vasculitis and healthy volunteers. I also studied circulating cytokine profiles of IL-10 and IL-18. Results of IL-18 SNPs were validated in AASV cohort from South-East USA. Further I studied the gene expression patterns of active and remission state of AASV and metabolomics profile of cANCA and pANCA positive patients during active and remission state of vasculitis. Clinical outcomes (relapses and renal survival) were correlated with the genotypes. Results: I found a significantly higher incidence (9.8/million population) of pauciimmune glomerulonephritis in Greater Manchester compared to the previously published data from UK and USA (2.73 to 4.6/million). Renal function at the time of diagnosis predicted the long term renal survival. I also found a novel genetic association of increased frequency of high producer IL-18 SNPs 113T, 127C and 137G in pANCA positive patients compared to normal volunteers (p=0.04) and cANCA positive patients (trend- p=0.08). This was associated with increased levels of circulating IL-18 levels in these patients. This association was further confirmed in an independent cohort of AASV from USA. I also found a lower frequency of low producer GG genotype of IL-10 -1082 SNP (p=0.05) and this was associated with lower levels of circulating IL-10 in these patients compared to pANCA positive patients. I found significant difference in the metabolomics profiles of cANCA andpANCA positive patients. In paired plasma samples, levels of some metabolites were high during remission state compared to active vasculitis. Conclusions: These findings strongly support the hypothesis that there is an increased incidence of pauciimmune glomerulonephritis in Greater Manchester. There are genetic differences in cANCA and pANCA positive patients which may explain the different observed outcomes. Genome wide association study would strengthen these findings and should guide the vasculitis community to reclassify, assess and perhaps treat these two conditions separately.
48

The genomic and metabolomic profiling of pancreas cancer

Sanyal, Sudip January 2015 (has links)
Despite the considerable expansion of knowledge in the development of pancreatic cancer, there has been little progress made in facilitating an early diagnosis of this disease and predicting an accurate response to treatment. We aim to translate this knowledge to clinical practice by using a prospective database of precursor cystic lesions in pancreas cancer, assessing the use of over-expressed genes in pancreatic juice as a surrogate marker of these pancreas cancer and finally, downstream of these changes at the genetic level, use metabolomic techniques to look for biomarkers in pancreas cancer in serum. In the first study, we investigate the natural history of pancreatic cystic neoplasms, specifically IPMNs, using a prospectively collected database to examine the profiles and outcomes of main duct IPMN, branch duct IPMN and cystic lesions measuring less than 3 cm in size. A total of 99 patients with suspected pancreatic cystic tumours were enrolled over 3 years. Median follow-up was 24 months (range 0 – 124). Cystic tumours comprised of 13 MD-IPMN, 40 BD-IPMN, 11 MCN and 8 adenocarcinomas among others. The complete cohort showed an overall risk of adenocarcinoma of 8%. Main duct IPMN showed a cumulative risk of 46% with evidence of progression of disease in a further 23%. The associated mortality in MD-IPMN was related to the underlying adenocarcinoma and was 38% in our group. The incidence of adenocarcinoma in branch duct IPMN was 11% with disease progression seen 13.8%. Evidence of extra-pancreatic malignancies was seen in 37.7% of patients with IPMN. In the second study, we explore the feasibility of gene expression profiling from RNA isolated from matched pancreatic juice and tumour tissue in patients with pancreatic cancer and pancreatic cystic tumours. RNA was isolated and Poly(A) PCR was used to globally amplify the RNA. RT-PCR was used to measure expression levels of 18 genes common to both pancreas cancer and pancreatic cystic tumours. Spearman’s rank correlation test was used to examine the relationship of gene expression between pancreatic juice and tissue. One gene out of eighteen, MSLN (p<0.008), showed significant correlation in the expression levels between paired pancreatic juice and tissue samples in pancreas cancer. In the cystic tumour group, only one gene MMP-7 (p<0.01), showed a significant correlation between paired juice and tissue samples. When the whole cohort was analysed for the false discovery rate, these genes did not exhibit statistically significant correlation between the samples. RNA analysis of pancreatic juice is feasible using the Poly(A) cDNA technique and correlation of gene expression is shown to exist, albeit with low sensitivity, indicating its potential use in clinical practice with small tissue and juice samples. In the final study, we performed a literature review on the use of metabolomics in pancreas cancer. We performed metabolic profiling of serum samples from selected cancer patients and noncancerous controls using UPHLC-MS to generate and compare the metabolic profiles in serum samples from a cohort of patients with pancreas cancer, ampullary cancer and endocrine cancer. Thirty nine serum samples (including 19 pancreatic cancers, 9 ampullary cancers and 5 endocrine cancers) and 21 matched HUSERMET controls were analysed using Ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) in both positive and negative ESI modes. The output was generated as a data matrix of mass spectral features with related accurate m/z and retention time pairs. The data was then signal corrected and individual peaks were normalised and the resultant spectra were compared against a metabolite reference library and analysed using univariate and multivariate statistical tests. We found a disparity in the metabolite peaks between the cases and controls on PCA that did not permit the accurate interpretation of the data in the case study set compared to the control set. No obvious reason other than metabolite degradation during storage could account for this difference. PC-DFA analysis of metabolite peaks between pancreas cancer, ampullary cancer and endocrine cancer showed significant difference between endocrine cancers and the other two groups. Significant ESI positive metabolites included those involved in lipid pathways and metabolites involved in glucose metabolism. There is encouraging scope for studies using prospective controls to identify and develop metabolic biomarkers in pancreas cancer.
49

Targeted Metabolomics Reveals the Effect of Nitrate Supplementation on Vascular Function

January 2020 (has links)
abstract: In the United States, two-thirds of adults are considered hypertensive orprehypertensive. In addition, chronic illness, such as hypertension, cardiovascular disease, and type II diabetes, results in $3.5 trillion in annual healthcare cost and is the primary cause of disability and death. As a result, many individuals seek cheaper and simpler alternatives to combat their conditions. In this exploratory analysis, a study assessing nitrate intake and its effects on vascular function in 39 young adult males was investigated for underlying metabolic variations through a liquid chromatography – mass spectrometry-based large-scale targeted metabolomics approach. A two-way repeated measures ANOVA was used, and 18 significant metabolites were discovered across the time, treatment, and time & treatment groups, including prostaglandin E2 (p<0.001), stearic acid (p=0.002), caprylic acid (p=0.016), pentadecanoic acid (p=0.027), and heptadecanoic acid (p=0.005). In addition, log-transformed principal component analysis and orthogonal partial least squares – discriminant analysis models demonstrated distinct separation among the treatment, control, and time variables. Moreover, pathway and enrichment analyses validated the effect of nitrate intake on the metabolite sets and its possible function in fatty acid oxidation. This better understanding of altered metabolic pathways may help explicate the benefits of nitrate on vascular function and reveal any unknown mechanisms of its supplementation. / Dissertation/Thesis / Masters Thesis Nutrition 2020
50

Metabolomic Profiles of Placenta in Preeclampsia: Antioxidant Effect of Magnesium Sulfate on Trophoblasts in Early-Onset Preeclampsia / 妊娠高血圧腎症の胎盤におけるメタボローム解析:硫酸マグネシウムの早発型妊娠高血圧腎症の胎盤における抗酸化作用

Kawasaki, Kaoru 23 July 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21998号 / 医博第4512号 / 新制||医||1038(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 柳田 素子, 教授 松田 文彦, 教授 木村 剛 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0496 seconds