• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 111
  • 68
  • 17
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 565
  • 110
  • 105
  • 101
  • 79
  • 64
  • 63
  • 57
  • 54
  • 53
  • 47
  • 46
  • 45
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

An untargeted LC-MS investigation of South African children with respiratory chain deficiencies / Leonie Venter

Venter, Leonie January 2014 (has links)
Mitochondria are the main site of cellular adenosine triphosphate (ATP) generation which is achieved by a series of multi-subunit complexes and electron carriers which together create the oxidative phosphorylation system (OXPHOS). Whenever a defect in any of the numerous mitochondrial pathways occurs it is commonly referred to as a mitochondrial disorder. Mitochondrial disorders are a heterogeneous group of disorders characterised by impaired energy production and include a wide range of defects of either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) encoded proteins. In cases of dysfunction in the respiratory chain (complex I to IV) it is known to be a respiratory chain deficiency (RCD) which presents a huge challenge for routine diagnosis largely due to the lack of a specific and sensitive biomarker(s). One sure way of confirming the suspicion of a RCD is by performing enzyme analysis on a muscle sample obtained through a biopsy. However, due to the lack of theatre time available to clinicians and the relative large number of false positive patients that are being selected for biopsies, it was decided to develop a biosignature to limit the number of false positive patients from the diagnostic workflow. An untargeted liquid chromatography mass spectrometry (LC-MS) metabolomics approach was used to investigate RCDs in children from South Africa. Sample preparation, a liquid chromatography time-of-flight mass spectrometry method and data processing methods were standardised. Furthermore the developed methodology made use of reverse phase chromatography in conjunction with positive electrospray ionisation (ESI) and a hydrophilic interaction chromatography (HILIC) in negative electrospray ionisation. Urine samples of 61 patients representing three different experimental groups were analysed. The three experimental groups comprised of patients with respiratory chain deficiencies, clinical referred controls (CRC) and patients suffering from various neuromuscular disorders (NMD). After a variety of data mining steps and statistical analysis a list of 12 features were compiled with the ability to distinguish between patients with RCDs and CRCs. The proposed signature was also tested on the neuromuscular disorder group, but this result indicated that the biosignature performed better when used to differentiate between patients with RCDs and CRCs, since the model was designed with this purpose. An alternative validation study is required to identify the features found with this proposed biosignature, to ensure that this biosignature can be practically implemented as a non-invasive screening method. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
72

An untargeted LC-MS investigation of South African children with respiratory chain deficiencies / Leonie Venter

Venter, Leonie January 2014 (has links)
Mitochondria are the main site of cellular adenosine triphosphate (ATP) generation which is achieved by a series of multi-subunit complexes and electron carriers which together create the oxidative phosphorylation system (OXPHOS). Whenever a defect in any of the numerous mitochondrial pathways occurs it is commonly referred to as a mitochondrial disorder. Mitochondrial disorders are a heterogeneous group of disorders characterised by impaired energy production and include a wide range of defects of either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) encoded proteins. In cases of dysfunction in the respiratory chain (complex I to IV) it is known to be a respiratory chain deficiency (RCD) which presents a huge challenge for routine diagnosis largely due to the lack of a specific and sensitive biomarker(s). One sure way of confirming the suspicion of a RCD is by performing enzyme analysis on a muscle sample obtained through a biopsy. However, due to the lack of theatre time available to clinicians and the relative large number of false positive patients that are being selected for biopsies, it was decided to develop a biosignature to limit the number of false positive patients from the diagnostic workflow. An untargeted liquid chromatography mass spectrometry (LC-MS) metabolomics approach was used to investigate RCDs in children from South Africa. Sample preparation, a liquid chromatography time-of-flight mass spectrometry method and data processing methods were standardised. Furthermore the developed methodology made use of reverse phase chromatography in conjunction with positive electrospray ionisation (ESI) and a hydrophilic interaction chromatography (HILIC) in negative electrospray ionisation. Urine samples of 61 patients representing three different experimental groups were analysed. The three experimental groups comprised of patients with respiratory chain deficiencies, clinical referred controls (CRC) and patients suffering from various neuromuscular disorders (NMD). After a variety of data mining steps and statistical analysis a list of 12 features were compiled with the ability to distinguish between patients with RCDs and CRCs. The proposed signature was also tested on the neuromuscular disorder group, but this result indicated that the biosignature performed better when used to differentiate between patients with RCDs and CRCs, since the model was designed with this purpose. An alternative validation study is required to identify the features found with this proposed biosignature, to ensure that this biosignature can be practically implemented as a non-invasive screening method. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
73

Metab-Immune analysis of the non-obese diabetic mouse

Banday, Viqar January 2016 (has links)
Type 1A diabetes mellitus or T1D is a chronic disease characterized by T cell mediated destruction of the insulin producing β cells in the islets of Langerhans. The classical symptoms include high glucose levels in urine and blood, polyuria, and polydipsia. Complications associated with T1D include blindness, amputations, and end-stage renal disease, and premature death. The non-obese diabetic (NOD) mouse, first described in 1980, is widely used as a model organism for T1D. T1D disease in the NOD mouse shares a number of similarities to human T1D including dependence on genetic and environmental factors. More than 30 disease associated gene regions or loci (termed insulin dependent diabetes, or Idd, loci) have been associated with T1D development in NOD. For some of these Idds, the corresponding region in human has been linked to the development of T1D in human. T1D, both in humans and mice, is recognized as a T cell mediated disease. However, many studies have shown the importance of both the metabolome and the immune system in the pathogenesis of the disease. Appearance of autoantibodies in the serum of patients is the first sign of pathogenesis. However, molecular and cellular events precede the immune attack on the β-cell immunity. It has been shown that patients who developed T1D have an altered metabolome prior to the appearance of autoantibodies. Although much is known about the pathogenesis of T1D, the contribution of the environment/immune factors triggering the disease is still to be revealed.  In the present study both metabolic and immune deviations observed in the NOD mouse was analyzed. Serum metabolome analysis of the NOD mouse revealed striking resemblance to the human metabolic profile, with many metabolites in the TCA cycle significantly different from the non-diabetic control B6 mice. In addition, an increased level of glutamic acid was of the most distinguishing metabolite. A detailed bioinformatics analysis revealed various genes/enzymes to be present in the Idd regions. Compared to B6 mice, many of the genes correlated to the metabolic pathways, showed single nucleotide polymorphism (SNP), which can eventually affect the functionality of the protein. A genetic analysis of the increased glutamic acid revealed several Idd regions to be involved in this phenotype. The regions mapped in the genetic analysis harbor important enzymes and transporters related to glutamic acid. In-vitro islet culture with glutamic acid led to increased beta cell death indicating a toxic role of glutamic acid specifically towards insulin producing beta cells. In the analysis of the immune system, B cells from NOD mice, which are known to express high levels of TACI, were stimulated with APRIL, a TACI ligand. This resulted in enhanced plasma cell differentiation accompanied with increased class switching and IgG production. NOD mice have previously been shown to react vigorously to T-dependent antigens upon immunization. In this study we confirmed this as NOD mice showed an enhanced and prolonged immune response to hen egg lysozyme. Thus, serum IgG levels were significantly increased in the NOD mice and were predominantly of the IgG1 subtype. Immunofluorescence analysis revealed increased number of germinal centers in the NOD mice. Transfer of purified B and T cells from NOD to an immune deficient mouse could reproduce the original phenotype as seen in the NOD mice.     Collectively, this thesis has analyzed the metabolomics and immune deviations observed in the NOD mice.
74

Phase II study of metformin for reduction of obesity-associated breast cancer risk: a randomized controlled trial protocol

Martinez, Jessica A., Chalasani, Pavani, Thomson, Cynthia A., Roe, Denise, Altbach, Maria, Galons, Jean-Philippe, Stopeck, Alison, Thompson, Patricia A., Villa-Guillen, Diana Evelyn, Chow, H-H. Sherry 19 July 2016 (has links)
Background: Two-thirds of U.S. adult women are overweight or obese. High body mass index (BMI) and adult weight gain are risk factors for a number of chronic diseases, including postmenopausal breast cancer. The higher postmenopausal breast cancer risk in women with elevated BMI is likely to be attributable to related metabolic disturbances including altered circulating sex steroid hormones and adipokines, elevated pro-inflammatory cytokines, and insulin resistance. Metformin is a widely used antidiabetic drug that has demonstrated favorable effects on metabolic disturbances and as such may lead to lower breast cancer risk in obese women. Further, the anti-proliferative effects of metformin suggest it may decrease breast density, an accepted biomarker of breast cancer risk. Methods/design: This is a Phase II randomized, double-blind, placebo-controlled trial of metformin in overweight/obese premenopausal women who have elements of metabolic syndrome. Eligible participants will be randomized to receive metformin 850 mg BID (n=75) or placebo (n=75) for 12 months. The primary endpoint is change in breast density, based on magnetic resonance imaging (MRI) acquired fat-water features. Secondary outcomes include changes in serum insulin levels, serum insulin-like growth factor (IGF)-1 to insulin-like growth factor binding protein (IGFBP)-3 ratio, serum IGF-2 levels, serum testosterone levels, serum leptin to adiponectin ratio, body weight, and waist circumference. Exploratory outcomes include changes in metabolomic profiles in plasma and nipple aspirate fluid. Changes in tissue architecture as well as cellular and molecular targets in breast tissue collected in a subgroup of participants will also be explored. Discussion: The study will evaluate whether metformin can result in favorable changes in breast density, select proteins and hormones, products of body metabolism, and body weight and composition. The study should help determine the potential breast cancer preventive activity of metformin in a growing population at risk for multiple diseases.
75

Functional evaluation of plant defence signalling against Fusarium graminearum and F. culmorum in Arabidopsis floral tissue

Brewer, Helen Caroline January 2014 (has links)
Fusarium Ear Blight (FEB) is a globally important floral disease of cereal crops such as wheat, maize and barley. The predominant causal agents of FEB disease of wheat in the UK are Fusarium culmorum and F. graminearum. Wheat infecting isolates of both of these fungal species infect the floral and silique tissues of the model plant Arabidopsis thaliana, providing a tractable model for analysis of factors determining plant susceptibility or resistance to Fusarium infection. The effect of F. culmorum infection on the metabolic composition (metabolome) of Arabidopsis pedicel tissue following silique inoculation was investigated in a collection of mutants with altered defence responses to F. culmorum and/or other plant pathogens, using a 1¬H-NMR/ESI-MS (+/-) triple fingerprinting approach. These mutants showed differing metabolomic fingerprints in the absence of F. culmorum infection, as well as differences in accumulation or depletion of metabolites in response to F. culmorum colonisation. A number of metabolites were also identified which were induced by F. culmorum infection irrespective of plant genotype. Quantitative differences in compound accumulation were also observed between genotypes in the Columbia and Landsberg erecta accessions following F. culmorum infection. One of the genotypes investigated was eds11, which has enhanced susceptibility to F. culmorum floral infection. Mapping of the mutation responsible for the eds11 phenotype was initiated using an isogenic mapping by sequencing approach. This resulted in a list of potential candidates for the EDS11 gene. Additional Arabidopsis mutants were investigated for altered defence responses to F. culmorum floral infection. Multiple mutant alleles of the Arabidopsis homoserine kinase gene DMR1 were found to have enhanced resistance to F. culmorum silique infection and rosette leaf colonisation, associated with accumulation of homoserine in siliques and delayed leaf senescence. Exogenous homoserine application enhanced resistance in wild type and dmr1 plants. Collectively, these findings form a novel contribution to current knowledge of the Fusarium-Arabidopsis interaction. This may have applications for improvement of FEB resistance in cereals.
76

Metabolômica e evolução de caracteres químicos na subtribo Espeletiinae (Asteraceae) / Metabolomics and evolution of chemical traits in the subtribe Espeletiinae (Asteraceae)

Gonzalez, Guillermo Federico Padilla 14 December 2018 (has links)
A subtribo Espeletiinae (Asteraceae) representa um exemplo clássico de adaptação em ecossistemas tropicais de altitudes elevadas. No entanto, estudos que combinem diferentes campos de pesquisa ainda são necessários para entender este caso proeminente de radiações adaptativas rápidas nos trópicos. Esta tese fornece uma abordagem multidisciplinar combinando informação metabolômica, biogeográfica, taxonômica, evolutiva, química, molecular e ecológica, para um estudo aprofundado da subtribo Espeletiinae e do seu gênero irmão Smallanthus. Através de análises metabolômicas baseadas em cromatografia líquida de ultra-alta eficiência acoplada a espectrometria de massas, nós fornecemos, pela primeira vez, evidências metabolômicas de segregação alopátrica em Espeletiinae e evidência metabolômica apoiando a possível segregação do gênero Espeletia em dois gêneros diferentes com distintas impressões digitais metabólicas. Em combinação com a filogenia molecular da subtribo e amplificações por PCR, demonstramos que a evolução dos caracteres químicos em Espeletiine seguiu cenários complexos de mudança química com alguns caracteres representando sinapomorfias químicas e outros representando múltiplos ganhos e perdas, implicando em evolução convergente. Por fim, analisando os padrões de expressão dos principais genes envolvidos na biossíntese de ácidos clorogênicos, flavonoides e lactonas sesquiterpênicas, em combinação com análises metabolômicas e informações ambientais, relatamos a regulação ambiental e de desenvolvimento do metabolismo secundário de Smallanthus sonchifolius, fornecendo informações relevantes para o entendimento dos fatores regulatórios e possíveis papéis adaptativos dos metabólitos secundários em táxons andinos. Em conclusão, esta tese fornece uma compreensão holística de uma linhagem que representa um exemplo clássico de radiações adaptativas rápidas nos Andes tropicais, abrindo uma nova perspectiva intrigante de pesquisa em outros grupos / The subtribe Espeletiinae (Asteraceae) represents a classic example of adaptation in tropical high-elevation ecosystems. However, studies bringing different research fields are still necessary to understand this prominent case of rapid adaptive radiations in the tropics. This dissertation provides a multidisciplinary approach combining metabolomic, biogeographic, taxonomical, evolutionary, chemical, molecular and ecological information, for an in-depth study of the subtribe Espeletiinae and its sister genus Smallanthus. Through metabolomic analyses based on ultrahigh-performance liquid chromatography-mass spectrometry, we provide, for the first time, metabolomic evidence of allopatric segregation in Espeletiinae and metabolomic evidence supporting a putative segregation of the genus Espeletia in two different genera with distinctive metabolic fingerprints. In combination with the molecular phylogeny of the subtribe and PCR amplifications, we also demonstrate that the evolution of chemical traits in Espeletiinae followed complex scenarios of chemical change with some traits representing chemical synapomorphies and other traits being gained and lost multiple times implying convergent evolution. Lastly, by analyzing the expression patterns of key genes involved in the biosynthesis of chlorogenic acids, flavonoids and sesquiterpene lactones, in combination with metabolomic analyses and environmental information, we report the developmental and environmental regulation of the secondary metabolism of Smallanthus sonchifolius, providing relevant information towards the understanding of the regulatory factors and possible adaptive roles of secondary metabolites in Andean taxa. In conclusion, this dissertation provides a holistic understanding of a lineage representing a classic example of rapid adaptive radiations in the tropical Andes, opening an intriguing new perspective of research in other groups
77

Novel Small Molecules and Tumor Cells

Strelko, Cheryl January 2012 (has links)
Thesis advisor: Mary F. Roberts / Thesis advisor: Eranthie Weerapana / Small molecules are of interest both as metabolites in tumor cell biology and as potential therapeutics in the fight against cancer. In this work, small molecules in both roles have been examined. Modulation of tumor cell metabolism holds promise as a strategy to combat cancer, and both glucose and glutamine have been identified as critical fuels for tumor cell growth and proliferation. However, the reason for glutamine addiction is poorly understood. The differential metabolism of glutamine and glucose was therefore examined using ¹³C labeling and NMR-based metabolomics in the VM-M3 tumor cell line, which requires both glucose and glutamine for survival and proliferation. In the course of this study, a novel mammalian metabolite itaconic acid was identified. Itaconic acid was detected in extracts and tissue culture media from the murine macrophage-derived tumor cell lines VM-M3 and RAW 264.7 as well as in primary macrophages. Production and secretion of itaconic acid was increased upon stimulation. LC-MS and NMR based metabolomics studies show that this metabolite is synthesized by the decarboxylation of cis-aconitate from the TCA cycle, and provided evidence for a novel mammalian homologue of the enzyme cis-aconitic decarboxylase. D-3-deoxy diC₈PI is a small molecule of interest as a potential cancer therapeutic. This compound was designed to induce apoptosis in tumor cells by competitively binding to the Akt PH domain and preventing Akt translocation. However, high resolution ³¹P field-cycling studies show that both D-3-deoxy diC₈PI and an inactive analogue L-3,5-dideoxy diC₈PI bind to the same site on the PH domain, which is distinct from the binding site of the ligand diC₈PI(3,4,5)P₃. This makes the aforementioned mechanism of cytotoxicity unlikely. Aggregation of the PH domain in the presence of soluble headgroup IP₆ was also observed, which may be related to a physiological function of this protein and invalidates at least one other binding assay. Investigation into alterations in signaling pathways in the MCF-7 breast cancer cell line showed that D-3-deoxy diC₈PI activates the p38MAPK pathway which results in CREB hyperphosphorylation. However, activation of this pathway appears to be compensatory and unrelated to the mechanism of action. D-3-deoxy diC₈PI also decreases levels of cyclin D1 and cyclin D3, which regulate the progression of the cell cycle. These decreases appear to be occurring at the transcriptional level rather than due to increased proteasomal degradation. The loss of these two proteins does not cause apoptosis in MCF-7 cells, but siRNA knockdown of specifically cyclin D1 inhibits proliferation. This is consistent with the cell cycle arrest observed upon D-3-deoxy diC₈PI treatment in these cells. These findings do not conclusively elucidate the mechanism of cytotoxicity of D-3-deoxy diC₈PI, but provide a characterization of some of its effects in the MCF-7 cell line which may be useful for further studies. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
78

Uso de ressonância magnética nuclear na análise metabolômica de biofluidos de animais tratados com ivermectina / Use of Nuclear Magnetic Resonance in metabolomic analysis of biofluids from animails trated with Ivermectin

Postigo, Matheus Pereira 11 May 2012 (has links)
A pesquisa bioquímica no campo da Metabolômica/Metabonômica tem se intensificado consideravelmente nos últimos anos, por sua capacidade de adquirir uma grande quantidade de informação a respeito do comportamento de um organismo através de seu metabolismo. Para isso, frequentemente faz uso da aplicação das mais diversas técnicas analíticas, como a Ressonância Magnética Nuclear. A Ivermectina é um fármaco de amplo uso no Brasil, dada a sua eficiência no controle de verminoses e pragas em gado (e humanos) e está aqui inserida no contexto metabolômico/metabonômico dadas as inúmeras violações ocorridas na carne brasileira exportada. A não observância dos períodos adequados de carência para abate dos animais tratados pode refletir seriamente na qualidade destes produtos. Assim, utilizou-se a Ivermectina como forma de provocar mudanças no metabolismo de bovinos e camundongos, procurando-se correlacionar as variações encontradas à dose aplicada. Através de ferramentas auxiliares, como RMN-2D e ferramentas quimiométricas exploratórias, fez-se a avaliação de amostras de plasma sanguíneo e urina bovinos, e plasma sanguíneo de camundongos Balb-C, após administração de Ivermectina. Os resultados obtidos mostram que a Ivermectina tem influência no balanço energético do organismo, interferindo nos níveis de lactato e β-hidróxibutirato, podendo estar ligada ao aparecimento de uma condição metabólica crítica em mamíferos, relacionada à alta concentração de corpos cetônicos na corrente sanguínea dos mesmos. / The biochemical research in the field of Metabolomics/ Metabonomics has grown considerably in recent years because its capability of acquiring a large amount of information about the behavior of an organism through its metabolism. For this, it often applies several analytical techniques such as Nuclear Magnetic Resonance. Ivermectin is a drug widely used in Brazil, for its effectiveness in controlling verminosis and pests in livestock (and humans) and is here inserted in the metabolomic/metabonomic context because of the numerous breaches occurred in brazilian beef exports. Failures to comply with the appropriate withdrawal periods for slaughtering treated animals may reflect seriously on the quality of these products. Thus, we used Ivermectin as a metabolism change inducer in cattle and mice, trying to correlate these variations to the applied dose. Through auxiliary tools such as 2D-NMR and chemometric exploratory tools, we evaluated samples of bovine blood plasma and urine, and blood plasma of Balb-C mice, after Ivermectin administration. The results show that Ivermectin has influence on the organism\'s energy balance, interfering with lactate and β-hydroxybutyrate which can be connected to the onset of a critical metabolic condition in mammals, related to the high concentration of ketone bodies in their blood stream.
79

Avaliação analítica de potenciais biomarcadores para câncer de bexiga em urina / Analytical evaluation of potential biomarkers for bladder cancer in urine

Alberice, Juliana Vieira 11 April 2014 (has links)
O câncer de bexiga é uma neoplasia urogenital que acomete homens e mulheres, sendo que somente no Brasil 8.600 novos casos ao ano são diagnosticados. Cistoscopia transuretral é a conduta padrão no diagnóstico e acompanhamento do câncer de bexiga. Entretanto, tal procedimento é extremamente invasivo e doloroso além de ter elevado custo e não garantir todos os resultados. Assim, busca-se por marcadores moleculares que possam auxiliar no diagnóstico e progressão do câncer de bexiga, bem como diminuir a necessidade de exames invasivos no acompanhamento de pacientes tratados. Nesse sentido, a urina tem papel de destaque como fonte de biomarcadores devido principalmente ao seu caráter não invasivo. <br /> Nesse trabalho foram utilizadas duas abordagens \'ômicas\': proteômica e metabolômica, para a busca de biomarcadores em urina para o diagnóstico e prognóstico do câncer de bexiga, respectivamente. Com a abordagem proteômica buscou-se apenas por biomarcadores para o diagnóstico da doença e, utilizando as técnicas de eletroforese 2-DE, OFFGEL e MS, juntamente com análise estatística multivariada, foi possível identificar 32 proteínas que apresentam-se como potenciais marcadores para o câncer de bexiga. A abordagem metabolômica foi empregada para a busca de biomarcadores para reincidência e progressão da doença. As técnicas analíticas utilizadas nessa abordagem, LC-MS e CE-MS, mostraram-se complementares e, dos resultados obtidos com ambas e avaliados com análise estatística multivariada foi possível indicar 19 metabólitos para reincidência e 23 metabólitos para progressão do câncer de bexiga. <br /> Assim, neste trabalho explorou-se como as ciências \'ômicas\', a qual abrange técnicas analíticas de high-throughput, estatística multivariada e ferramentas de bioinformática auxiliando na descoberta de potenciais biomarcadores não invasivos para o diagnóstico e prognóstico do câncer de bexiga. Portanto, o presente estudo foi de grande importância e relevância à medida que ilustrou como tais técnicas podem potencialmente auxiliar no diagnóstico e prognóstico de doenças e contribuir para tratamentos personalizados no futuro, indicando a potencialidade de estudos dessa natureza. / Bladder cancer is an urogenital cancer affecting men and women, and just in Brazil 8,600 new cases are diagnosed annually. Transurethral cystoscopy is a standard conduct in the diagnosis and monitoring of bladder cancer. However, this procedure is extremely invasive, painful, expensive and does not guarantee the best results. Thus, the searching for molecular markers may assist in the diagnosis and monitoring of bladder cancer, as well as decreasing the need for invasive tests in the monitoring of patients treatment. In this way, urine shows an important role as a source of biomarkers, mainly due to its non-invasive nature. <br /> In this work we used two \'omics\' approaches: proteomics and metabolomics, to search for biomarkers in urine for the diagnosis and progression of bladder cancer, respectively. The proteomics approach was explored for biomarkers for diagnosing disease. Using 2-DE, OFFGEL electrophoresis, and MS techniques, as well multivariate statistical analysis, they were identified 32 proteins that may be pointed as potential markers for bladder cancer. The metabolomics approach was used to search for biomarkers for progression and recurrence of the disease. The analytical techniques used for this approach, LC-MS and CE-MS, were complementary to each other and the results evaluated with multivariate statistical analysis indicated that 19 metabolites for recurrence and 23 metabolites for progression of bladder cancer could possibly be used for validation studies. <br /> Thus, we demonstrated how the \'omics\' sciences, which include high- throughput analytical techniques, multivariate statistical analysis, and bioinformatics tools, aid in the discovery of potential biomarkers for noninvasive diagnosis, evaluate recurrence and monitor progression of bladder cancer. Therefore, this study was of high relevance to demonstrate the potential of such techniques to contribute to studies of personalized medicine.
80

Estudos metabolômicos de Astedraceae por UPLC-UV-HRFTMS, avaliação do potencial anti-inflamatório in vitro e suas correlações através de métodos in silico / Metabolomic studies of Asteraceae by UPLC-UV-HRFTMS, in vitro evaluation of the anti-inflammatory potential and their correlation by in silico methods

Paula, Daniela Aparecida Chagas de 25 September 2013 (has links)
Estudos metabolômicos de plantas, estudos in silico e ensaios biológicos in vitro são estratégias que, em conjunto, otimizam a busca por substâncias inéditas e/ou ativas correlacionadas a determinados mecanismos de ação. Embora a família Asteraceae possua inúmeras espécies com reconhecido potencial anti-inflamatório (AI), várias delas nunca foram investigadas, como algumas espécies endêmicas do Cerrado brasileiro. Neste contexto, o objetivo deste trabalho foi encontrar extratos e substâncias AI que apresentassem um mecanismo de ação superior ao dos AIs atuais. Foram estudadas 57 espécies da família pertencentes a várias tribos, agrupadas em três diferentes grupos: plantas com prévia evidência AI, plantas alimentícias e espécies do Cerrado. Para se encontrar substâncias com potencial AI foi realizada a avaliação da inibição concomitante das enzimas ciclooxigenase (COX-1) e lipoxigenase (5-LOX), sendo ambas as principais vias envolvidas na inflamação, cuja inibição pode conferir maior eficácia e menores efeitos adversos do que os AI atualmente disponíveis. Adequados estudos metabolômicos (HPLC-UV-HRFTMS) e in silico (diferentes modelos estatísticos) foram realizados. O conjunto de metabólitos secundários (metaboloma) das 57 espécies investigadas representou um vasto universo de substâncias (n=6.215), que conseguiu abranger várias delas com o mecanismo de ação investigado. Corroborando o potencial desta família em apresentar espécies AI, cerca de 23% das plantas aqui investigadas foram capazes de promover a dupla inibição, com valores de IC50 (36,0 a 0,03 ?g/mL) para seus extratos comparáveis com aqueles dos inibidores padrões. Através dos estudos in silico foi possível determinar que as substâncias ativas dos extratos se referem a seus constituintes minoritários, sugerindo que devem ser muito potentes. Dentre as substâncias correlacionadas com a propriedade de dupla inibição, algumas não puderam ser identificadas, mesmo utilizando abrangentes bibliotecas de dados de produtos naturais, sugerindo que se tratam de substâncias inéditas. Além disso, dentre as espécies ativas, uma é consagrada como alimentícia e, portanto, pode vir a exercer um importante papel como nutracêutico, por exemplo vir a ser incluída na dieta de pacientes que sofrem de patologias inflamatórias. As demais espécies ativas, por sua vez, apresentam potencial para o desenvolvimento de fitoterápicos e descoberta de novos princípios ativos. Devido ao fato dos modelos estatísticos terem sido validados, as substâncias ativas ainda poderão ser utilizadas para predição de novos extratos ativos a partir apenas de seu metaboloma. Portanto, este trabalho, além de resultar em relevantes resultados, exemplifica muito bem as novas estratégias para a busca de produtos naturais inéditos e AI para um mecanismo de ação requerido, através de uma abordagem inédita e explorando espécies de importância da flora brasileira, alimentícia ou farmacológica, a partir de mínima quantidade de material vegetal. / Plant metabolomic studies, in silico studies and in vitro biological assays are strategies that together, optimize the discovery of new and/or active compounds correlated to a specific mechanism of action. Asteraceae family has many species with well known anti-inflammatory (AI) potential. Several of them have never been investigated, as some of Brazilian Cerrado. In this context, the objective of this work was to find the AI extracts and substances with a better mechanism of action than the usual AI. It was studied 57 species from different tribes of Asteraceae family, which were divided in three groups: plants with known AI property, food plants and species from Cerrado. In order to find substances with AI potential, the inhibition of cyclooxygenase (COX-1) and lipoxygenase (5-LOX) were evaluated to access AI property, once both are the main pathways involved in inflammatory process and the dual inhibition of them can provide better efficacy and less side effects than current AI. Suitable metabolomic (HPLC-UV-HRFTMS) and in silico (statistical models) studies were performed. All the secondary metabolites (metabolome) of the 57 species covered a huge number of substances (n=6,215) and some of them displayed the investigated mechanism of action. About 23% of the plants extracts were able to be dual inhibitor, with IC50 (36.0 - 0.03 ?g/mL) similar of the standard drugs, corroborating the AI potential of Asteraceae family. Through the in silico studies it was possible to determine the AI substances and that they are the minor compounds in the active extracts, suggesting that these must be potent AI. Among the substances correlated with the dual inhibition some could not be identified, even using comprehensive data bases of natural products, suggesting that these ones could be new compounds. Besides, among the active species, one is a food plant that could be useful as nutraceutical, being included in the dietary of people with inflammatory diseases. The other active plants have potential to the development of phytomedicines or drug discovery. Due to the fact that statistical models were validated, the substances also can be useful for prediction of new AI extracts only from the plant metabolome. Therefore, this work has many relevant results and also exemplifies the recent strategies to discovery of new compounds and AI with a required specific mechanism of action, trough a new approach and studying important species of the Brazilian flora, food plants and AI plants, from a minimum quantity of plant material.

Page generated in 0.4258 seconds