• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 111
  • 68
  • 17
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 571
  • 110
  • 105
  • 101
  • 79
  • 65
  • 64
  • 57
  • 56
  • 53
  • 48
  • 46
  • 45
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Hepatic Stress Response Mechanisms in Progressive Human Nonalcoholic Fatty Liver Disease

Lake, April D. January 2013 (has links)
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide, chronic liver disease of increasing clinical significance. It is closely associated with the rising epidemics of obesity and insulin resistance. Up to 17% of the United States population may progress from the disease stage characterized as simple, benign steatosis to the more severe, inflammatory stage of nonalcoholic steatohepatitis (NASH). This progression occurs through 2nd 'hits' of increased oxidative stress and inflammation to a liver that has been sensitized by lipotoxic stress. NASH is also characterized by increased collagen deposition resulting in fibrosis and architectural rearrangement of the liver. Progressive NAFLD is currently recognized as an important contributor to the development of cryptogenic cirrhosis and subsequent liver-related mortalities (estimated at 30-40% in these patients).The pathological progression of NAFLD, as described by the 'two hit' hypothesis, characterizes the different stages of liver injury. However, the mechanism(s) responsible for the progression to NASH are unknown. Profiling global gene expression and metabolite patterns in human liver samples representing the full spectrum of progressive human NAFLD may reveal potential mechanisms of progressive disease. Human liver samples representing each stage of NAFLD progression were analyzed by methodologies such as high-throughput microarrays, high resolution mass spectrometry, and protein immunoblot techniques. Bioinformatics tools and gene expression/regulation database software were utilized in several studies to characterize the altered hepatic profiles of these patients. Hepatic transcriptomic profiles of ADME (absorption, distribution, metabolism and elimination) and ER (endoplasmic reticulum) stress response genes exhibited initiated hepatoprotective responses in patients with NASH. The endogenous pathways of BA (bile acid) synthesis and BCAA (branched chain amino acid) metabolism also showed evidence of coordinately regulated alterations in response to disease-induced stress in NASH. The transcriptional regulation of the investigated pathways was confirmed by transcription factor binding sites enrichment analysis. The collective response to hepatic stress in human NAFLD, demonstrates a coordinated, hepatoprotective intent that may be utilized for future therapeutics in the battle against progressive liver disease.
212

Network-Scale Engineering: Systems Approaches to Synthetic Biology

Boyle, Patrick M. 10 August 2012 (has links)
The field of Synthetic Biology seeks to develop engineering principles for biological systems. Modular biological parts are repurposed and recombined to develop new synthetic biological devices with novel functions. The proper functioning of these devices is dependent on the cellular context provided by the host organism, and the interaction of these devices with host systems. The field of Systems Biology seeks to measure and model the properties of biological phenomena at the network scale. We present the application of systems biology approaches to synthetic biology, with particular emphasis on understanding and remodeling metabolic networks. Chapter 2 demonstrates the use of a Flux Balance Analysis model of the Saccharomyces cerevisiae metabolic network to identify and construct strains of S. cerevisiae that produced increased amounts of formic acid. Chapter 3 describes the development of synthetic metabolic pathways in Escherichia coli for the production of hydrogen, and a directed evolution strategy for hydrogenase enzyme improvement. Chapter 4 introduces the use of metabolomic profiling to investigate the role of circadian regulation in the metabolic network of the photoautotrophic cyanobacterium Synechococcus elongatus PCC 7942. Together, this work demonstrates the utility of network-scale approaches to understanding biological systems, and presents novel strategies for engineering metabolism.
213

Discovery of Novel Lipid Pathways associated with the Metabolic Syndrome

Homan, Edwin January 2012 (has links)
The prevalence of obesity and type 2 diabetes has increased at alarming rates in recent decades. These diseases are prominent components of the metabolic syndrome, which is characterized by marked dyslipidemia. Adipose tissue contributes to the development of obesity-related diabetes through increased release of hormones and non-esterified fatty acids. The development of sensitive analytical tools for the broad detection of lipid biomolecules, such as liquid chromatographymass spectrometry (LC-MS), has spurred interest in the molecular determinants of the metabolic syndrome. The development of mature adipocytes from precursor fibroblasts—adipogenesis—plays a crucial role in the expansion of adipose tissue in obesity. We profiled differentiating 3T3-L1 pre-adipocytes by LC-MS and found that a class of monoglyceride lipids, monoalkylglycerol ethers (MAGEs), was transiently elevated early in adipogenesis. Upon addition to differentiating cells, MAGE specifically promoted adipocyte maturation and expression of adipogenic gene markers, indicating that MAGEs may be signaling molecules during adipogenesis. The insulin-sensitive glucose transporter, GLUT4, is downregulated during obesity and diabetes. In collaboration with Prof. Barbara Kahn, we studied a transgenic mouse model that overexpressed GLUT4 specifically in adipose tissue (AG4OX) and was protected from developing diabetes. We used LC-MS-based metabolomics to discover a previously undescribed class of bioactive lipids that was highly upregulated in AG4OX adipose tissue. We structurally characterized these lipids as fatty acyl hydroxy fatty acids (FAHFAs) and several positional isomers were chemically synthesized to confirm structural assignments via coelution studies. We discovered that individual FAHFAs, such as 5-palmitoyl-hydroxystearic acid (5-PAHSA), were differentially regulated by the transcription factor ChREBP. Circulating 5-PAHSA levels in mice and humans correlated with ChREBP expression and insulin resistance. In order to explore the biochemical regulation of FAHFAs, we developed an LCMS-based assay to measure FAHFA hydrolysis activity. We identified one enzyme, carboxyl ester lipase (CEL), as the major FAHFA hydrolase in pancreas, where the activity was highest. We confirmed its relevance in vivo by feeding labeled FAHFA to CEL inhibitor-treated mice. In this work we used LC-MS-based metabolomics to discover two lipids, MAGE and FAHFA, along with the CEL pathway, that may help us to better understand the pathogenesis of obesity and diabetes. / Chemistry and Chemical Biology
214

Discovery of bioactive lipids and lipid pathways in cell death and disease

Zhang, Tejia 04 June 2015 (has links)
Apoptosis is an intricately regulated cellular process required for the health and homeostasis of living systems. The mitochondrial apoptotic pathway depends on the BCL-2 family of pro- and anti-apoptotic members whose interactions regulate cell fate. BAX and BAK are key pro-apoptotic proteins required for mitochondrial permeabilization during apoptosis. While the mitochondrial death program relies heavily on its protein components, evidences support equally crucial roles for lipids and lipid metabolism in promoting or hindering apoptosis at the mitochondria. To gain insight into the interplay between lipids and BCL-2 proteins we used a liquid chromatography (LC)-mass spectrometry (MS)-based comparative lipidomics approach to uncover lipid changes in the absence of BAX and/or BAK. Our analysis revealed novel functions for BAX and BAK in inflammation and ceramide metabolism. A targeted LC-MS workflow was also developed for characterization of a novel lipid class involved in type 2 diabetes. Targeted LC-MS revealed altered oxysterol metabolism following perturbation of the Sonic hedgehog pathway. Taken together, our findings demonstrate interesting connections among lipids, cell death and disease. / Chemistry and Chemical Biology
215

Characterization of Protein-Metabolite and Protein-Substrate Interactions of Disease Genes

McFedries, Amanda Kathryn 04 December 2014 (has links)
Discovery of protein-metabolite and protein-substrate interactions that can specifically regulate genes involved in human biology is an important pursuit, as the study of such interactions can expand our understanding of human physiology and reveal novel therapeutic targets. The identification and characterization of these interactions can be approached from different perspectives. Chemists often use bioactive small molecules, such as natural products or synthetic compounds, as probes to identify therapeutically relevant protein targets. Biochemists and biologists often begin with a specific protein and seek to identify the endogenous ligands that bind to it. These interests have led to the development of methodology that relies heavily on synthetic and analytical chemistry to identify interactions, an approach that is complemented by in vivo strategies for validating the biological consequences of specific interactions.
216

The significance of feedback de-excitation

Külheim, Carsten January 2005 (has links)
During photosynthesis sunlight is absorbed by photosynthetic pigments and converted into organic compounds, such as carbohydrates. Photosynthesis needs to be highly regulated, since both too much and too little light are harmful to plant. If too little light is absorbed, a plant cannot store enough energy, which will have effects on growth and fitness of the plant. With too much light absorbed, a dangerous side reaction of photosynthesis, the production of reactive oxygen species can happen. These reactive oxygen species can damage the proteins in the chloroplast and the lipids of the chloroplast. To avoid the production of reactive oxygen species, plants have evolved many mechanisms, which act on different time-scales and different levels of organization. As a first measure, when the absorbed light is exceeding the capacity for its utilization, is to switch the light-harvesting antenna from efficient light harvesting to energy dissipation. This process is called feedback de-excitation (FDE). The protein PsbS is essential for this process as well as a functioning xanthophylls cycle with the enzyme violaxanthin de-epoxidase (VDE). I have investigated the effects of plants with changes in their ability to dissipate excess excitation energy in the model plants species Arabidopsis thaliana. Three genotypes with either increased or decreased capacity for FDE were used during my experiments. The first genotype over-expresses the PsbS gene, having approximately two-fold increased amounts of PsbS and FDE. The second is a PsbS deletion mutant with no PsbS protein and no FDE. The third genotype cannot perform the conversion of violaxanthin to zeaxanthin, because the enzyme VDE is missing. This mutant has some FDE left. Arabidopsis thaliana is an annual plant, which flowers only once in its lifetime. Therefore, when counting the seeds produced an estimation of fitness can be made from the amount of seeds produced. This was done during my experiments and shown that FDE is a trait and that plants with increased FDE have a higher fitness and vice versa. This was also the case for a collection of plants lacking a single protein from the light harvesting antenna. All of these genotypes had a fitness reduction, proving that their function is not redundant. In an attempt to explain why the fitness is reduced in plants with altered FDE, photosynthetic measurements, as well as a determination of the transcriptome and the metabolome was performed. Plants lacking FDE had higher levels of photoinhibition, leading both to lower rates of photosynthesis and to higher repair cost. This could in part explain the reduction in fitness. These plants also had major changes in their transcriptome and their metabolome. Primary metabolism was most effected, for example carbohydrate and amino acid metabolism. But there were also changes in secondary metabolism such as an up regulation of the biosynthesis of anthocyanins.
217

Systems Biology of Microbiota Metabolites and Adipocyte Transcription Factor Network

Choi, Kyungoh 16 December 2013 (has links)
The overall goal of this research is to understand roles of gut microbiota metabolites and adipocyte transcription factor (TF) network in health and disease by developing systematic analysis methods. As microbiota can perform diverse biotransformation reactions, the spectrum of metabolites present in the gastrointestinal (GI) tract is extremely complex but only a handful of bioactive microbiota metabolites have been identified. We developed a metabolomics workflow that integrates in silico discovery with targeted mass spectrometry. A computational pathway analysis where microbiota metabolisms are modeled as a single metabolic network is utilized to predict a focused set of targets for multiple reaction monitoring (MRM) analysis. We validated our methodology by predicting, quantifying in murine cecum and feces and characterizing tryptophan (TRP)-derived metabolites as ligands for the aryl hydrocarbon receptor. The adipocyte process of lipid droplet accumulation and differentiation is regulated by multiple TFs that function together in a network. Although individual TF activation is previously reported, construction of an integrated network has been limited due to different measurement conditions. We developed an integrated network model of key TFs - PPAR, C/EBP, CREB, NFAT, FoxO1, and SREBP-1c - underlying adipocyte differentiation. A hypothetic model was determined based on literature, and stochastic simulation algorithm (SSA) was applied to simulate TF dynamics. TF activation profiles at different stages of differentiation were measured using 3T3-L1 reporter cell lines where binding of a TF to its DNA binding element drives expression of the Gaussia luciferase gene. Reaction trajectories calculated by SSA showed good agreement with experimental measurement. The TF model was further validated by perturbing dynamics of CREB using forskolin, and comparing the predicted response with experimental data. We studied the molecular recognition mechanism underlying anti-inflammatory function of a bacterial metabolite, indole in DC2.4 cells. The indole treatment attenuated the fraction of cells that were producing the pro-inflammatory cytokine, TNFα and knockdown of nuclear receptor related 1 (Nurr1; NR4A2) resulted in less indole-derived suppression of TNFα production. The first discovery of NR4A2 as a molecular mediator of the endogenous metabolite, indole is expected to provide a new strategy for treatment of inflammatory disorders.
218

Using 1H-NMR based metabolomics to investigate the pathological consequences of mitochondrial disease and human rabies infection

Reinke, Stacey N Unknown Date
No description available.
219

Nuclear Magnetic Resonance metabolomic fingerprint of the Interleukin 10 gene deficient mouse model of Inflammatory Bowel Disease

Tso, Victor Key Unknown Date
No description available.
220

The influence of iron therapy on the clinical outcomes, the colonic bacteria microbiome and the urinary metabolomics in iron deficient subjects

Lee, Thomas Wei Te Unknown Date
No description available.

Page generated in 0.0295 seconds