• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Polymeric Binders for Metal Injection Molding (MIM) Process

Adames, Juan M. January 2007 (has links)
No description available.
2

Ferro puro moldado por injeção para aplicação em Stents biodegradáveis

Mariot, Paulo January 2016 (has links)
Na presente pesquisa, produziu-se amostras de ferro puro poroso como biomaterial degradável visando a aplicação em stents, pelo processo de moldagem por injeção de pós metálicos (MPI). Os efeitos da fração volumétrica de ferro puro na mistura de injeção e da temperatura de sinterização na porosidade, microestrutura, propriedades mecânicas, propriedades de superfície, de degradação in vitro e de biocompatibilidade, foram investigados. Os resultados obtidos foram comparados com o ferro puro fabricado por fusão e com o aço inoxidável AISI 316-L. Encontrou-se que o grau de porosidade remanescente nas amostras sinterizadas foi o principal fator influenciando as propriedades mecânicas e de superfície, influenciando indiretamente os demais resultados. O ferro puro produzido por MPI exibiu valores de limite de escoamento entre 59 e 114 MPa e limite de resistência máximo de 210 MPa, com alongamento entre 10 e 50 %. A alta ductilidade é uma propriedade especialmente requerida em materiais para potencial aplicação em stents. Suas taxas de degradação em solução de Hank foram superiores às do ferro puro fabricado por fusão. O material fabricado com mistura de injeção contendo fração de ferro de 66 % (acima da fração crítica) mostrou o maior alongamento e boa taxa de degradação, um resultado interessante, pois segundo a literatura, valores acima da fração volumétrica crítica não são amplamente explorados. Os testes de biocompatibilidade mostraram excelente hemocompatibilidade do ferro puro fabricado por MPI com as células do sangue. Todas as condições testadas mostraram um nível de citotoxicidade abaixo do recomendado pela norma vigente, mas este dependendo da concentração de íons de ferro empregada e do grau de porosidade. Entre todas as condições de ensaio investigadas, as amostras contendo fração volumétrica de ferro de 62 % inicialmente na mistura de injeção e sinterizadas a 1120 oC, apresentaram a melhor combinação de propriedades para aplicação em stents. Concluiu-se que a MPI é um método tecnicamente viável como rota de produção de tubos de parede fina precursores para fabricação de stents biodegradáveis. / In the present research, an attempt was made to produce porous pure iron, as a metallic degradable biomaterial potentially for stent application, via the MIM route. The effects of iron powder loading and sintering temperature on the porosity, microstructure, mechanical properties, surface properties and in vitro degradation behavior of MIM iron were investigated. The results obtained were compared to those of cast iron. It was found that the amount of porosity remained in the as-sintered specimens had a major effect on their surface and mechanical properties. The MIM pure iron showed yield strength values between 59 and 114 MPa and maximum tensile strength of 210 MPa, with elongation values between 10 and 50 %. A high ductility is a specially required property of stent materials. Its degradation rates in Hank’s solution were superior to the degradation rate of cast iron. The material made from the feedstock containing 66 % of iron powder, above the critical powder loading, showed the highest elongation and a good in vitro degradation rate. This result is interesting, once according to the literature, powder loadings above the critical value are not well explored. The biocompatibility tests showed excellent hemocompatibility of MIM pure iron with blood cells. All conditions tested showed toxicity level below the values determined by current standards, but depending of Fe ions concentration and porosity level. Between all the conditions tested in the present investigation, the 62 % powder loading sample, sintered at 1120 oC, showed the best combination of properties for stent application. In conclusion, MIM is a promising method to be developed as a new route to produce thin-wall tubes for biodegradable stents.
3

Ferro puro moldado por injeção para aplicação em Stents biodegradáveis

Mariot, Paulo January 2016 (has links)
Na presente pesquisa, produziu-se amostras de ferro puro poroso como biomaterial degradável visando a aplicação em stents, pelo processo de moldagem por injeção de pós metálicos (MPI). Os efeitos da fração volumétrica de ferro puro na mistura de injeção e da temperatura de sinterização na porosidade, microestrutura, propriedades mecânicas, propriedades de superfície, de degradação in vitro e de biocompatibilidade, foram investigados. Os resultados obtidos foram comparados com o ferro puro fabricado por fusão e com o aço inoxidável AISI 316-L. Encontrou-se que o grau de porosidade remanescente nas amostras sinterizadas foi o principal fator influenciando as propriedades mecânicas e de superfície, influenciando indiretamente os demais resultados. O ferro puro produzido por MPI exibiu valores de limite de escoamento entre 59 e 114 MPa e limite de resistência máximo de 210 MPa, com alongamento entre 10 e 50 %. A alta ductilidade é uma propriedade especialmente requerida em materiais para potencial aplicação em stents. Suas taxas de degradação em solução de Hank foram superiores às do ferro puro fabricado por fusão. O material fabricado com mistura de injeção contendo fração de ferro de 66 % (acima da fração crítica) mostrou o maior alongamento e boa taxa de degradação, um resultado interessante, pois segundo a literatura, valores acima da fração volumétrica crítica não são amplamente explorados. Os testes de biocompatibilidade mostraram excelente hemocompatibilidade do ferro puro fabricado por MPI com as células do sangue. Todas as condições testadas mostraram um nível de citotoxicidade abaixo do recomendado pela norma vigente, mas este dependendo da concentração de íons de ferro empregada e do grau de porosidade. Entre todas as condições de ensaio investigadas, as amostras contendo fração volumétrica de ferro de 62 % inicialmente na mistura de injeção e sinterizadas a 1120 oC, apresentaram a melhor combinação de propriedades para aplicação em stents. Concluiu-se que a MPI é um método tecnicamente viável como rota de produção de tubos de parede fina precursores para fabricação de stents biodegradáveis. / In the present research, an attempt was made to produce porous pure iron, as a metallic degradable biomaterial potentially for stent application, via the MIM route. The effects of iron powder loading and sintering temperature on the porosity, microstructure, mechanical properties, surface properties and in vitro degradation behavior of MIM iron were investigated. The results obtained were compared to those of cast iron. It was found that the amount of porosity remained in the as-sintered specimens had a major effect on their surface and mechanical properties. The MIM pure iron showed yield strength values between 59 and 114 MPa and maximum tensile strength of 210 MPa, with elongation values between 10 and 50 %. A high ductility is a specially required property of stent materials. Its degradation rates in Hank’s solution were superior to the degradation rate of cast iron. The material made from the feedstock containing 66 % of iron powder, above the critical powder loading, showed the highest elongation and a good in vitro degradation rate. This result is interesting, once according to the literature, powder loadings above the critical value are not well explored. The biocompatibility tests showed excellent hemocompatibility of MIM pure iron with blood cells. All conditions tested showed toxicity level below the values determined by current standards, but depending of Fe ions concentration and porosity level. Between all the conditions tested in the present investigation, the 62 % powder loading sample, sintered at 1120 oC, showed the best combination of properties for stent application. In conclusion, MIM is a promising method to be developed as a new route to produce thin-wall tubes for biodegradable stents.
4

Ferro puro moldado por injeção para aplicação em Stents biodegradáveis

Mariot, Paulo January 2016 (has links)
Na presente pesquisa, produziu-se amostras de ferro puro poroso como biomaterial degradável visando a aplicação em stents, pelo processo de moldagem por injeção de pós metálicos (MPI). Os efeitos da fração volumétrica de ferro puro na mistura de injeção e da temperatura de sinterização na porosidade, microestrutura, propriedades mecânicas, propriedades de superfície, de degradação in vitro e de biocompatibilidade, foram investigados. Os resultados obtidos foram comparados com o ferro puro fabricado por fusão e com o aço inoxidável AISI 316-L. Encontrou-se que o grau de porosidade remanescente nas amostras sinterizadas foi o principal fator influenciando as propriedades mecânicas e de superfície, influenciando indiretamente os demais resultados. O ferro puro produzido por MPI exibiu valores de limite de escoamento entre 59 e 114 MPa e limite de resistência máximo de 210 MPa, com alongamento entre 10 e 50 %. A alta ductilidade é uma propriedade especialmente requerida em materiais para potencial aplicação em stents. Suas taxas de degradação em solução de Hank foram superiores às do ferro puro fabricado por fusão. O material fabricado com mistura de injeção contendo fração de ferro de 66 % (acima da fração crítica) mostrou o maior alongamento e boa taxa de degradação, um resultado interessante, pois segundo a literatura, valores acima da fração volumétrica crítica não são amplamente explorados. Os testes de biocompatibilidade mostraram excelente hemocompatibilidade do ferro puro fabricado por MPI com as células do sangue. Todas as condições testadas mostraram um nível de citotoxicidade abaixo do recomendado pela norma vigente, mas este dependendo da concentração de íons de ferro empregada e do grau de porosidade. Entre todas as condições de ensaio investigadas, as amostras contendo fração volumétrica de ferro de 62 % inicialmente na mistura de injeção e sinterizadas a 1120 oC, apresentaram a melhor combinação de propriedades para aplicação em stents. Concluiu-se que a MPI é um método tecnicamente viável como rota de produção de tubos de parede fina precursores para fabricação de stents biodegradáveis. / In the present research, an attempt was made to produce porous pure iron, as a metallic degradable biomaterial potentially for stent application, via the MIM route. The effects of iron powder loading and sintering temperature on the porosity, microstructure, mechanical properties, surface properties and in vitro degradation behavior of MIM iron were investigated. The results obtained were compared to those of cast iron. It was found that the amount of porosity remained in the as-sintered specimens had a major effect on their surface and mechanical properties. The MIM pure iron showed yield strength values between 59 and 114 MPa and maximum tensile strength of 210 MPa, with elongation values between 10 and 50 %. A high ductility is a specially required property of stent materials. Its degradation rates in Hank’s solution were superior to the degradation rate of cast iron. The material made from the feedstock containing 66 % of iron powder, above the critical powder loading, showed the highest elongation and a good in vitro degradation rate. This result is interesting, once according to the literature, powder loadings above the critical value are not well explored. The biocompatibility tests showed excellent hemocompatibility of MIM pure iron with blood cells. All conditions tested showed toxicity level below the values determined by current standards, but depending of Fe ions concentration and porosity level. Between all the conditions tested in the present investigation, the 62 % powder loading sample, sintered at 1120 oC, showed the best combination of properties for stent application. In conclusion, MIM is a promising method to be developed as a new route to produce thin-wall tubes for biodegradable stents.
5

Development and characterization of polymer- metallic powder feedstocks for micro-injection molding

Kong, Xiangji 07 February 2011 (has links) (PDF)
Micro-Powder Injection Moulding (Micro-PIM) technology is one of the key technologies that permit to fit with the increasing demands for smaller parts associated to miniaturization and functionalization in different application fields. The thesis focuses first on the elaboration and characterization of polymer-powder mixtures based on 316L stainless steel powders, and then on the identification of physical and material parameters related to the sintering stage and to the numerical simulations of the sintering process. Mixtures formulation with new binder systems based on different polymeric components have been developed for 316L stainless steel powders (5 µm and 16 µm). The characterization of the resulting mixtures for each group is carried out using mixing torque tests and viscosity tests. The mixture associated to the formulation comprising polypropylene + paraffin wax + stearic acid is well adapted for both powders and has been retained in the subsequent tests, due to the low value of the mixing torque and shear viscosity. The critical powder volume loading with 316L stainless steel powder (5 µm) according to the retained formulation has been established to 68% using four different methods. Micro mono-material injection (with 316L stainless steel mélange) and bi-material injection (with 316L stainless steel mélange and Cu mélange) are properly investigated. Homogeneity tests are observed for mixtures before and after injection. A physical model well suited for sintering stage is proposed for the simulation of sintering stage. The identification of physical parameters associated to proposed model are defined from the sintering stages in considering 316L stainless steel (5 µm)mixtures with various powder volume loadings (62%, 64% and 66%). Beam-bending tests and free sintering tests and thermo-Mechanical-Analyses (TMA) have also investigated. Three sintering stages corresponding to heating rates at 5 °C/min, 10 °C/min and 15 °C/min are used during both beam-bending tests and free sintering tests. On basis of the results obtained from dilatometry measurements, the shear viscosity module G, the bulk viscosity module K and the sintering stress σs are identified using Matlab® software. Afterwards, the sintering model is implemented in the Abaqus® finite element code, and appropriate finite elements have been used for the support and micro-specimens, respectively. The physical material parameters resulting from the identification experiments are used to establish the proper 316L stainless steel mixture, in combination with G, K and σs parameters. Finally, the sintering stages up to 1200 °C with three heating rates (5 °C/min, 10 °C/min and 15 °C/min) are also simulated corresponding to the four micro-specimen types (powder volume loading of 62%, 64% and 66%). The simulated shrinkages and relative densities of the sintered micro-specimens are compared to the experimental results indicating a proper agreement
6

Desenvolvimento de ímãs de Nd-Fe-B pelo processo MPI- aplicados em máquinas elétricas (motores)

Luna, Wilberth Harold Deza January 2012 (has links)
O processo tradicional de fabricação de ímãs de terras raras – TR – é a metalurgia do pó convencional. Este processo inclui etapas de preparação da liga, moagem, compactação sob campo e sinterização. Atualmente, ímãs obtidos pelo processo de injeção tem como resultado os ímãs conhecidos como bonded, que são compósitos de resina e ligas magnéticas. O processo de obtenção proposto neste trabalho é a moldagem de pós por injeção – MPI, o que implica novos desafios uma vez que ligas de terras raras são altamente reativas. A obtenção de ímãs de Nd-Fe-B por esse processo fornece a oportunidade de diversificar ainda mais os setores, potencialmente lucrativos, que trabalham com materiais magnéticos. As dificuldades desse processo foram encontradas em cada etapa, desde a mistura da liga com os polímeros à eliminação destes polímeros depois de as peças serem injetadas, essa etapa se tornou crítica dado que está diretamente relacionada às propriedades finais do material. Assim, propuseram-se novos ciclos de extração dos polímeros com solventes orgânicos e degradação térmica. Além disso, modelou-se ferramental para o processo de injeção, uma vez que o material deve ser orientado magneticamente durante a injeção. Finalmente usou-se o MAXWELL 14® (software para análises por elementos finitos para resolução em 3D) para incluir propriedades no banco de dados do software e assim predizer o comportamento do material quando aplicado nas máquinas elétricas de núcleos com de formato complexo. / The typical magnets production process of Rare Earths – RE is the conventional powder metallurgy. This process includes preparation stages of alloys, grind, pressing under field and sintering. Nowadays, magnet obtained by the injection process has as result the magnets known as bonded, that is a resin composite and magnetic alloys. The proposed process to obtainment, in this work, is the Metal Injection Molding- MIM, what involve new challenges once alloys of RE are highly reactive. The magnets obtainment of ND-Fe-B for this process supplies even opportunity of diversifying the sectors, potentially lucrative, that work with magnetic materials. The difficulties of this process were found in each stage, since the alloy mixture with the polymers to the elimination of these polymers after the pieces are injected, this stage became criticizes given it is directly related to final properties of the material. This way if it propose to polymers extraction new cycles with organic solvents and thermal degradation. Moreover, it modeled die for the injection process, once the material should be guided magnetically during the injection. It finally used MAXWELL 14 ® (Software for analyses by finite elements for resolution in 3D) to include properties on the bench of data of the software and thus predict the material behavior when applied in cores of electrical machines with complex shape.
7

Desenvolvimento de ímãs de Nd-Fe-B pelo processo MPI- aplicados em máquinas elétricas (motores)

Luna, Wilberth Harold Deza January 2012 (has links)
O processo tradicional de fabricação de ímãs de terras raras – TR – é a metalurgia do pó convencional. Este processo inclui etapas de preparação da liga, moagem, compactação sob campo e sinterização. Atualmente, ímãs obtidos pelo processo de injeção tem como resultado os ímãs conhecidos como bonded, que são compósitos de resina e ligas magnéticas. O processo de obtenção proposto neste trabalho é a moldagem de pós por injeção – MPI, o que implica novos desafios uma vez que ligas de terras raras são altamente reativas. A obtenção de ímãs de Nd-Fe-B por esse processo fornece a oportunidade de diversificar ainda mais os setores, potencialmente lucrativos, que trabalham com materiais magnéticos. As dificuldades desse processo foram encontradas em cada etapa, desde a mistura da liga com os polímeros à eliminação destes polímeros depois de as peças serem injetadas, essa etapa se tornou crítica dado que está diretamente relacionada às propriedades finais do material. Assim, propuseram-se novos ciclos de extração dos polímeros com solventes orgânicos e degradação térmica. Além disso, modelou-se ferramental para o processo de injeção, uma vez que o material deve ser orientado magneticamente durante a injeção. Finalmente usou-se o MAXWELL 14® (software para análises por elementos finitos para resolução em 3D) para incluir propriedades no banco de dados do software e assim predizer o comportamento do material quando aplicado nas máquinas elétricas de núcleos com de formato complexo. / The typical magnets production process of Rare Earths – RE is the conventional powder metallurgy. This process includes preparation stages of alloys, grind, pressing under field and sintering. Nowadays, magnet obtained by the injection process has as result the magnets known as bonded, that is a resin composite and magnetic alloys. The proposed process to obtainment, in this work, is the Metal Injection Molding- MIM, what involve new challenges once alloys of RE are highly reactive. The magnets obtainment of ND-Fe-B for this process supplies even opportunity of diversifying the sectors, potentially lucrative, that work with magnetic materials. The difficulties of this process were found in each stage, since the alloy mixture with the polymers to the elimination of these polymers after the pieces are injected, this stage became criticizes given it is directly related to final properties of the material. This way if it propose to polymers extraction new cycles with organic solvents and thermal degradation. Moreover, it modeled die for the injection process, once the material should be guided magnetically during the injection. It finally used MAXWELL 14 ® (Software for analyses by finite elements for resolution in 3D) to include properties on the bench of data of the software and thus predict the material behavior when applied in cores of electrical machines with complex shape.
8

Desenvolvimento de ímãs de Nd-Fe-B pelo processo MPI- aplicados em máquinas elétricas (motores)

Luna, Wilberth Harold Deza January 2012 (has links)
O processo tradicional de fabricação de ímãs de terras raras – TR – é a metalurgia do pó convencional. Este processo inclui etapas de preparação da liga, moagem, compactação sob campo e sinterização. Atualmente, ímãs obtidos pelo processo de injeção tem como resultado os ímãs conhecidos como bonded, que são compósitos de resina e ligas magnéticas. O processo de obtenção proposto neste trabalho é a moldagem de pós por injeção – MPI, o que implica novos desafios uma vez que ligas de terras raras são altamente reativas. A obtenção de ímãs de Nd-Fe-B por esse processo fornece a oportunidade de diversificar ainda mais os setores, potencialmente lucrativos, que trabalham com materiais magnéticos. As dificuldades desse processo foram encontradas em cada etapa, desde a mistura da liga com os polímeros à eliminação destes polímeros depois de as peças serem injetadas, essa etapa se tornou crítica dado que está diretamente relacionada às propriedades finais do material. Assim, propuseram-se novos ciclos de extração dos polímeros com solventes orgânicos e degradação térmica. Além disso, modelou-se ferramental para o processo de injeção, uma vez que o material deve ser orientado magneticamente durante a injeção. Finalmente usou-se o MAXWELL 14® (software para análises por elementos finitos para resolução em 3D) para incluir propriedades no banco de dados do software e assim predizer o comportamento do material quando aplicado nas máquinas elétricas de núcleos com de formato complexo. / The typical magnets production process of Rare Earths – RE is the conventional powder metallurgy. This process includes preparation stages of alloys, grind, pressing under field and sintering. Nowadays, magnet obtained by the injection process has as result the magnets known as bonded, that is a resin composite and magnetic alloys. The proposed process to obtainment, in this work, is the Metal Injection Molding- MIM, what involve new challenges once alloys of RE are highly reactive. The magnets obtainment of ND-Fe-B for this process supplies even opportunity of diversifying the sectors, potentially lucrative, that work with magnetic materials. The difficulties of this process were found in each stage, since the alloy mixture with the polymers to the elimination of these polymers after the pieces are injected, this stage became criticizes given it is directly related to final properties of the material. This way if it propose to polymers extraction new cycles with organic solvents and thermal degradation. Moreover, it modeled die for the injection process, once the material should be guided magnetically during the injection. It finally used MAXWELL 14 ® (Software for analyses by finite elements for resolution in 3D) to include properties on the bench of data of the software and thus predict the material behavior when applied in cores of electrical machines with complex shape.
9

Mechanical, Microstructural and Corrosion performance for MIM materials based on coarse (-45µm) powders of ferritic stainless steel

Afraz, Syed Ali January 2012 (has links)
The purpose of this research is to investigate the mechanical, microstructural and corrosion performance of the ferritic stainless steel coarse powders, used in Metal Injection Molding (MIM) process. Three coarser powders made by Höganäs AB, were examined along with a commercially available fine MIM powder and samples from sheet metal. The studied powders were individually mixed with binders and then injection molded in the shape of dog bone shaped tensile bars. These green samples were then debinded and sintered to examine under different characterization methods. The methods used for examining the samples were tensile test, hardness test, metallography, SEM, chemical analysis, and salt spray test. After a comparative study of these different materials, it turns out that the chemical composition and the process parameters have more effect on materials properties compared to only particle size distribution in studied materials. After this study, 434 coarse powder was preferred upon the PolyMIM 430 fine powder, because of its lower price and same performance as that of PolyMIM 430.
10

Development and characterization of polymer- metallic powder feedstocks for micro-injection molding / Développement et caractérisation de mélanges polymères-poudres métalliques pour le micro moulage par injection

Kong, Xiangji 07 February 2011 (has links)
Le micro-moulage par Injection de Poudres (Micro-PIM) est l’une des technologies permettant de réaliser des micro-composants de très petites dimensions, associés à la miniaturisation et la fonctionnalisation dans différents domaines d’applications. La thèse concerne l’élaboration et la caractérisation de mélanges basés sur des poudres d’acier inoxydable de type 316L, l’identification des paramètres physiques associés à l’étape de densification est traitée. Des modélisations physiques et des simulations numériques de l’étape de densification par diffusion à l’état solide, sont ensuite proposées.De nouvelles formulations de mélanges à base de liants polymériques ont été développées pour différentes granulométries de poudres d’acier inoxydable de type 316L (5 µm et 16 µm). Les différents mélanges élaborés ont été élaborés et validés grâce à des comparatifs entre couples de mélangeages et courbes de viscosité de cisaillement. Les mélanges élaborés avec une formulation de base composée de polypropylène, de cire paraffine et d’acide stéarique, sont adaptés pour les deux types de poudre, et conduisent à des résultats significatifs pour les différents tests réalisés, conduisant à un couple de mélangeage et à une viscosité de cisaillement relativement faibles par rapport aux autres formulations. Le taux de charge critique obtenu pour l’acier inoxydable 316L (5 µm), avec la formulation optimale, est de 68% et a été déterminé par différentes méthodes. Les essais de micro-injection pour le mono-matériau (316L mélange) et les bi-matériaux (mélange de 316 L et Cu) ont été analysés en détail. Des tests d’homogénéité ont été réalisés avant et après l’étape d’injection.Un modèle thermo-élasto-viscoplastique approprié pour modéliser l’étape de densification a été utilisé pour la simulation de la densification des micro-composants. Les paramètres d’identification du modèle physique ont été identifiés pour des mélanges de poudres d’acier 316L (5 µm), pour différents taux de charge (62%, 64% et 66%). Des essais de flexion 3 points et de compression ont été réalisé à l’intérieur d’un dilatomètre vertical avec trois cinétiques de densification (5 °C/min, 10 °C/min et 15 °C/min). Les résultats obtenus par dilatométrie, ont permis l’identification du module de viscosité de cisaillement G, du module de compressibilité K, et de la contrainte de densification σs, Le modèle de comportement associé à la densification, incluant les paramètres identifiés a été implémenté dans le code éléments finis Abaqus©. Des éléments finis adaptés ont été utilisés, tant pour le support, que les quatre micro-éprouvettes de référence. Les simulations de l’étape de densification pour trois différentes cinétiques (5 °C/min, 10 °C/min et 15 °C/min) à 1200°C, ont été réalisées pour l’ensemble des micro-composants dont les taux de charge correspondent respectivement à 62%, 64% et 66%. Les retraits et densités relatives des micro-composants obtenus par simulation sont en très bonne corrélation avec les résultats expérimentaux / Micro-Powder Injection Moulding (Micro-PIM) technology is one of the key technologies that permit to fit with the increasing demands for smaller parts associated to miniaturization and functionalization in different application fields. The thesis focuses first on the elaboration and characterization of polymer-powder mixtures based on 316L stainless steel powders, and then on the identification of physical and material parameters related to the sintering stage and to the numerical simulations of the sintering process. Mixtures formulation with new binder systems based on different polymeric components have been developed for 316L stainless steel powders (5 µm and 16 µm). The characterization of the resulting mixtures for each group is carried out using mixing torque tests and viscosity tests. The mixture associated to the formulation comprising polypropylene + paraffin wax + stearic acid is well adapted for both powders and has been retained in the subsequent tests, due to the low value of the mixing torque and shear viscosity. The critical powder volume loading with 316L stainless steel powder (5 µm) according to the retained formulation has been established to 68% using four different methods. Micro mono-material injection (with 316L stainless steel mélange) and bi-material injection (with 316L stainless steel mélange and Cu mélange) are properly investigated. Homogeneity tests are observed for mixtures before and after injection. A physical model well suited for sintering stage is proposed for the simulation of sintering stage. The identification of physical parameters associated to proposed model are defined from the sintering stages in considering 316L stainless steel (5 µm)mixtures with various powder volume loadings (62%, 64% and 66%). Beam-bending tests and free sintering tests and thermo-Mechanical-Analyses (TMA) have also investigated. Three sintering stages corresponding to heating rates at 5 °C/min, 10 °C/min and 15 °C/min are used during both beam-bending tests and free sintering tests. On basis of the results obtained from dilatometry measurements, the shear viscosity module G, the bulk viscosity module K and the sintering stress σs are identified using Matlab® software. Afterwards, the sintering model is implemented in the Abaqus® finite element code, and appropriate finite elements have been used for the support and micro-specimens, respectively. The physical material parameters resulting from the identification experiments are used to establish the proper 316L stainless steel mixture, in combination with G, K and σs parameters. Finally, the sintering stages up to 1200 °C with three heating rates (5 °C/min, 10 °C/min and 15 °C/min) are also simulated corresponding to the four micro-specimen types (powder volume loading of 62%, 64% and 66%). The simulated shrinkages and relative densities of the sintered micro-specimens are compared to the experimental results indicating a proper agreement

Page generated in 0.0942 seconds