• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects of the chemistry of perfluorocarboxylato derivatives of zirconium and hafnium

Holmes, Robert David January 1995 (has links)
No description available.
2

Alkali Metal C1-C12 n-alkanoates

Bui, Ly, H Unknown Date
No description available.
3

Synthesis, Structure, Magnetic, Luminescent and Photocatalytic Studies on Metal-Organic Framework (MOF) Compounds

Mahata, Partha January 2009 (has links) (PDF)
The research in the area of metal-organic frameworks (MOFs) continues to be interesting for their unique structures and tunable properties. In this thesis, the various aspects of metal-organic frameworks (MOFs) compounds are presented. As part of this study, preparation of MOFs of transition metals (Mn, Co, Ni, Zn), rare-earth metals (Y, La, Pr, Nd, Gd, Dy) and mixed metals (3d-4f) using aromatic carboxylates as linker ligands were accomplished. Structures of the synthesized compounds have been determined by single crystal X-ray diffraction technique. Magnetic properties of the transition metal based compounds have been studied by SQUID magnetometer and the magnetic behaviors have been correlated with their structures using suitable theoretical model. Photocatalytic properties on transition metal and mixed metal compounds have been investigated. Ligand-sensitized metal-center emission has been studied on the Eu3+ and Tb3+ doped MOF compounds of La and Y. Up-conversion luminescence properties of Nd based compounds have also been studied. To gain an insight into the possible mechanism of the formation of MOF compounds, a detailed study of the role of temperature and time during the synthesis has been undertaken. In addition, the transformations of low-dimensional structures to structures of higher dimensionality was also studied, both in the solid state as well as in the solution mediated processes. In Chapter 1 of the thesis an overview of framework compounds is presented. In Chapter 2, the synthesis, structure and magnetic properties of benzene tricaboxylate and 4,4’-oxybis(benzoate) compounds of 3d metals are presented. Some of these compounds show unusual structure and interesting magnetic properties. For example, three-dimensional MOF with -Mn-O-Mn- Kagome layer exhibits canted antiferromagntic behavior. Three-dimensional MOF based on body centered arrangement of Co4 clusters shows two-dimensional ferromagnetic behavior. In Chapter 3, the role of temperature and time of reaction in the formation of MOF compounds and the transformation studies are presented. These studies give a clue regarding the mechanism for the synthesis of MOF compound. In chapter 4, synthesis, structure and luminescent properties of rare-earth and 3d-4f mixed metal compounds are presented. The thermal decomposition of Gd-Co-pyridine carboxylate indicates the formation of nano-sized perovskite oxide at temperature ~ 700 °C. In chapter 5, the photocatalytic behavior for the decomposition of organic dyes using MOF compounds are presented.
4

Síntese e caracterização de complexos contendo núcleos dimetálicos de rutênio e ligantes dicarboxilatos / Synthesis and characterization of complexes containing dinuclear ruthenium and dicarboxylate ligands

Ribeiro, Geise 28 November 2001 (has links)
Compostos do tipo [M2(O2CR)4] com ligação múltipla direta entre os centros metálicos apresentam importância do ponto de vista teórico bem como da química aplicada a diversas áreas. Recentemente tem havido um grande interesse voltado, especialmente, para o design de novos materiais construídos com base nestas unidades dimetálicas. O principal objetivo deste trabalho é o estudo de complexos de rutênio que apresentam núcleos M2 de valência mista do tipo Ru2(lI,III) com ligantes dicarboxílicos. A partir do complexo [Ru2(OAc)4CI], foram sintetizados compostos com os ligantes dicarboxilatos -O2C-R-CO2-, em que R são cadeias carbônicas saturadas (succinato, adipato e dodecanodioato) ou anéis aromáticos (tereftalato e 4,4\'-bifenildicarboxilato). Modificando-se a metodologia de síntese, foi possível isolar dois tipos de compostos: [Ru2(O2C-R-CO2)2CI] (R = succ, adip, dode, tere e bife) e [Ru4(O2C-R-CO2)5(H2O) 2] (R = adip e dode). Todos os compostos apresentam bandas de absorção na região do visível, ao redor de 450 nm, e do infravermelho próximo, ao redor de 1100 nm, que podem ser atribuídas, respectivamente às transições eletrônicas π (Ru-O, Ru2) → π* (Ru2) e δ (Ru2) → δ* (Ru2). Estas transições são características de espécies de [Ru2]5+, comprovando a manutenção das ligações metal-metal nos derivados. Os valores dos momentos magnéticos efetivos (µeff), calculados com base em medidas de susceptibilidade magnética, estão na faixa de 3,8-4,4 M.B para os compostos [Ru2(O2C-R-CO2)2CI] (R = succ, adip e dode) e correspondem à configuração eletrônica do estado fundamental do tipo σ2 µ4 δ2 (µ*)2 (δ *)1, com três elétrons desemparelhados, que é observada para carboxilatos de dirutênio (lI,III). Valores de µeff um pouco mais altos foram obtidos para os demais compostos, provavelmente devido à existência de algum tipo de acoplamento magnético. Nos espectros vibracionais FT-IR, observam-se bandas na faixa de 1470 a 1390 cm-1, que é típica das frequências de estiramentos νa e νs dos grupos COO- de carboxilatos ligados em ponte. Bandas relativas às frequências de estiramento das ligações metal-metal, ν(Ru-Ru), são observadas nos espectros Raman ao redor de 330 cm-1. Estes dados indicam que os compostos apresentam estruturas do tipo gaiola em que os ligantes carboxilatos formam pontes equatoriais (via grupo COO-) entre dois íons metálicos, estabilizando a ligação múltipla Ru-Ru. Devido à presença de dois grupos COO- para cada íon dicarboxilato, ocorre também a formação de pontes equatoriais entre centros de [Ru2]5+, gerando espécies poliméricas constituídas por unidades [Ru2(O2C-R-CO2)2]+. As posições axiais são ocupadas pelos ânions cloreto ou carboxilato, respectivamente nos casos dos compostos [Ru2(O2C-R-CO2)2CI] e [Ru4(O2C-R-CO2)5(H2O)2], que também formam pontes entre unidades dimetálicas. As presenças das pontes axiais e das pontes equatoriais entre unidades de [Ru2]5+ gerando estruturas tridimensionais que apresentam dois tipos distintos de lamelas ou camadas foram comprovadas com base nos valores das distâncias interplanares calculadas a partir dos difratogramas de raios-X de pó dos compostos. Os compostos são termicamente estáveis até a temperatura de ~ 250°C, conforme verificado por meio de estudos de análise termogravimétrica. Acima desta temperatura, começam a ocorrer perdas de massa que correspondem às perdas totais dos ligantes equatoriais e axiais, considerando-se o RuO2 como produto final das decomposições térmicas. Os compostos [Ru2(adip)2CI], [Ru2(tere)2CI] e [Ru4(dode)5(H2O)2] apresentam áreas superficiais elevadas, aproximadamente iguais a 170, 100 e 40 m2/g, respectivamente, que podem estar relacionadas à formação de estruturas microporosas. Estes tipos de estruturas com poros podem atuar como adsorvedores de gases, por exemplo, o que torna os compostos bastante promissores para aplicação na área de novos materiais microporosos, especialmente o primeiro cuja área é cerca de duas vezes maior do que a do segundo, o qual está descrito na literatura como bom adsorvedor para N2, O2 e Ar. / Compounds containing dimetal units [M2(O2CR)4] which have metal-metal multiple bonds are of great interest in both theoretical and applied chemistry. Recently they have been investigated as important compounds for the design of new materiaIs. The main goal of this work is the study of mixed valent diruthenium carboxylates. Compounds formed by Ru2(II,III) centers and -O2C-R-CO2- dicarboxylate ligands, where R is a saturated carbon chain (succinate, adipate and dodecanodioate) or aromatic ring (terephthalate and 4,4\'-diphenyldicarboxylate), were synthesized. Two types of compounds were obtained depending on the synthetic methodology: [Ru2( O2C-R-CO2)2CI] (R = succ, adip, dode, tere and bife) and [Ru4(O2C-R-CO2)5(H2O) 2] (R = adip and dode). AlI compounds exhibit absorption bands in the visible region, around 450 nm, and in the near infrared, around 1100 nm, which can be ascribed respectively to the π (Ru-O, Ru2) → π* (Ru2) and δ (Ru2) → δ* (Ru2) electronic transitions. These are characteristic of [Ru2]5+ dimetal species, indicating that the metal-metal bonds are present in the derivatives. The effective magnetic moments (µeff) values calculated from magnetic susceptibilities data are in the range of 3.8 - 4.4 B.M. for the [Ru2(O2C-R-CO2)2CI] (R = succ, adip and dode) compounds, corresponding to the σ2 µ4 δ2 (µ*)2 (δ *)1 ground state electronic configuration, with three unpaired electrons, that is observed for diruthenium (II,III) carboxylates. Higher µeff values found for the other compounds can be due to some type of magnetic coupling. The FT-IR vibrational spectra show characteristic bands in the region of 1470 1390 cm-1 that is typical of symmetric and asymmetric bridging carboxylate stretching modes. The metal-metal stretching modes, ν (Ru-Ru), are observed in the Raman spectra around 330 cm-1. Based on these results, it can be proposed that the compounds exhibit \'lantern\' type structures where the carboxylate ligands bridge two metal ions equatorially by COO- groups, stabilizing the Ru-Ru multiple bound. Due to the presence of two COO- groups for each dicarboxylate ion, there is the occurrence of equatorial bridges between [Ru2]5+ centers too, generating polymeric species constituted by [Ru2(O2C-R-CO2)2]+ units. The chloride or the carboxylate anionic axial ligands, respectively in [Ru2(O2C-R-CO2)2CI] and [Ru4(O2C-R-CO2)5(H2O)2] compounds, can also bridge the dimetal units in the axial direction. The existence of these axial and equatorial bridges between [Ru2]5+ units generate tridimensional network structures that exhibit two different types of layers, as shown by the analysis of the interplanar distances calculated from powder X-ray diffiaction of the solids. The compounds are thermally stable up to 250°C as indicated by thermogravimetric analysis. Above this temperature, there are losses of mass that correspond to the total losses of the equatorial and the axial ligands considering the RuO2 as the product of thermal decomposition. The [Ru2(adip)2CI], [Ru2(tere)2CI] and [Ru4(dode)5(H2O)2] compounds exhibit large superficial areas, about 170, 100 and 40 m2/g respectively, which could be indicative of microporous structures. These kinds of porous structures can be used as adsorbents for gases, for example. It makes the compounds very interesting for application as new microporous materiaIs, specially for the former which has a superficial area twice as bigger as the second one that is described in the literature as good adsorbent for N2, O2e Ar.
5

Síntese e caracterização de complexos contendo núcleos dimetálicos de rutênio e ligantes dicarboxilatos / Synthesis and characterization of complexes containing dinuclear ruthenium and dicarboxylate ligands

Geise Ribeiro 28 November 2001 (has links)
Compostos do tipo [M2(O2CR)4] com ligação múltipla direta entre os centros metálicos apresentam importância do ponto de vista teórico bem como da química aplicada a diversas áreas. Recentemente tem havido um grande interesse voltado, especialmente, para o design de novos materiais construídos com base nestas unidades dimetálicas. O principal objetivo deste trabalho é o estudo de complexos de rutênio que apresentam núcleos M2 de valência mista do tipo Ru2(lI,III) com ligantes dicarboxílicos. A partir do complexo [Ru2(OAc)4CI], foram sintetizados compostos com os ligantes dicarboxilatos -O2C-R-CO2-, em que R são cadeias carbônicas saturadas (succinato, adipato e dodecanodioato) ou anéis aromáticos (tereftalato e 4,4\'-bifenildicarboxilato). Modificando-se a metodologia de síntese, foi possível isolar dois tipos de compostos: [Ru2(O2C-R-CO2)2CI] (R = succ, adip, dode, tere e bife) e [Ru4(O2C-R-CO2)5(H2O) 2] (R = adip e dode). Todos os compostos apresentam bandas de absorção na região do visível, ao redor de 450 nm, e do infravermelho próximo, ao redor de 1100 nm, que podem ser atribuídas, respectivamente às transições eletrônicas π (Ru-O, Ru2) → π* (Ru2) e δ (Ru2) → δ* (Ru2). Estas transições são características de espécies de [Ru2]5+, comprovando a manutenção das ligações metal-metal nos derivados. Os valores dos momentos magnéticos efetivos (µeff), calculados com base em medidas de susceptibilidade magnética, estão na faixa de 3,8-4,4 M.B para os compostos [Ru2(O2C-R-CO2)2CI] (R = succ, adip e dode) e correspondem à configuração eletrônica do estado fundamental do tipo σ2 µ4 δ2 (µ*)2 (δ *)1, com três elétrons desemparelhados, que é observada para carboxilatos de dirutênio (lI,III). Valores de µeff um pouco mais altos foram obtidos para os demais compostos, provavelmente devido à existência de algum tipo de acoplamento magnético. Nos espectros vibracionais FT-IR, observam-se bandas na faixa de 1470 a 1390 cm-1, que é típica das frequências de estiramentos νa e νs dos grupos COO- de carboxilatos ligados em ponte. Bandas relativas às frequências de estiramento das ligações metal-metal, ν(Ru-Ru), são observadas nos espectros Raman ao redor de 330 cm-1. Estes dados indicam que os compostos apresentam estruturas do tipo gaiola em que os ligantes carboxilatos formam pontes equatoriais (via grupo COO-) entre dois íons metálicos, estabilizando a ligação múltipla Ru-Ru. Devido à presença de dois grupos COO- para cada íon dicarboxilato, ocorre também a formação de pontes equatoriais entre centros de [Ru2]5+, gerando espécies poliméricas constituídas por unidades [Ru2(O2C-R-CO2)2]+. As posições axiais são ocupadas pelos ânions cloreto ou carboxilato, respectivamente nos casos dos compostos [Ru2(O2C-R-CO2)2CI] e [Ru4(O2C-R-CO2)5(H2O)2], que também formam pontes entre unidades dimetálicas. As presenças das pontes axiais e das pontes equatoriais entre unidades de [Ru2]5+ gerando estruturas tridimensionais que apresentam dois tipos distintos de lamelas ou camadas foram comprovadas com base nos valores das distâncias interplanares calculadas a partir dos difratogramas de raios-X de pó dos compostos. Os compostos são termicamente estáveis até a temperatura de ~ 250°C, conforme verificado por meio de estudos de análise termogravimétrica. Acima desta temperatura, começam a ocorrer perdas de massa que correspondem às perdas totais dos ligantes equatoriais e axiais, considerando-se o RuO2 como produto final das decomposições térmicas. Os compostos [Ru2(adip)2CI], [Ru2(tere)2CI] e [Ru4(dode)5(H2O)2] apresentam áreas superficiais elevadas, aproximadamente iguais a 170, 100 e 40 m2/g, respectivamente, que podem estar relacionadas à formação de estruturas microporosas. Estes tipos de estruturas com poros podem atuar como adsorvedores de gases, por exemplo, o que torna os compostos bastante promissores para aplicação na área de novos materiais microporosos, especialmente o primeiro cuja área é cerca de duas vezes maior do que a do segundo, o qual está descrito na literatura como bom adsorvedor para N2, O2 e Ar. / Compounds containing dimetal units [M2(O2CR)4] which have metal-metal multiple bonds are of great interest in both theoretical and applied chemistry. Recently they have been investigated as important compounds for the design of new materiaIs. The main goal of this work is the study of mixed valent diruthenium carboxylates. Compounds formed by Ru2(II,III) centers and -O2C-R-CO2- dicarboxylate ligands, where R is a saturated carbon chain (succinate, adipate and dodecanodioate) or aromatic ring (terephthalate and 4,4\'-diphenyldicarboxylate), were synthesized. Two types of compounds were obtained depending on the synthetic methodology: [Ru2( O2C-R-CO2)2CI] (R = succ, adip, dode, tere and bife) and [Ru4(O2C-R-CO2)5(H2O) 2] (R = adip and dode). AlI compounds exhibit absorption bands in the visible region, around 450 nm, and in the near infrared, around 1100 nm, which can be ascribed respectively to the π (Ru-O, Ru2) → π* (Ru2) and δ (Ru2) → δ* (Ru2) electronic transitions. These are characteristic of [Ru2]5+ dimetal species, indicating that the metal-metal bonds are present in the derivatives. The effective magnetic moments (µeff) values calculated from magnetic susceptibilities data are in the range of 3.8 - 4.4 B.M. for the [Ru2(O2C-R-CO2)2CI] (R = succ, adip and dode) compounds, corresponding to the σ2 µ4 δ2 (µ*)2 (δ *)1 ground state electronic configuration, with three unpaired electrons, that is observed for diruthenium (II,III) carboxylates. Higher µeff values found for the other compounds can be due to some type of magnetic coupling. The FT-IR vibrational spectra show characteristic bands in the region of 1470 1390 cm-1 that is typical of symmetric and asymmetric bridging carboxylate stretching modes. The metal-metal stretching modes, ν (Ru-Ru), are observed in the Raman spectra around 330 cm-1. Based on these results, it can be proposed that the compounds exhibit \'lantern\' type structures where the carboxylate ligands bridge two metal ions equatorially by COO- groups, stabilizing the Ru-Ru multiple bound. Due to the presence of two COO- groups for each dicarboxylate ion, there is the occurrence of equatorial bridges between [Ru2]5+ centers too, generating polymeric species constituted by [Ru2(O2C-R-CO2)2]+ units. The chloride or the carboxylate anionic axial ligands, respectively in [Ru2(O2C-R-CO2)2CI] and [Ru4(O2C-R-CO2)5(H2O)2] compounds, can also bridge the dimetal units in the axial direction. The existence of these axial and equatorial bridges between [Ru2]5+ units generate tridimensional network structures that exhibit two different types of layers, as shown by the analysis of the interplanar distances calculated from powder X-ray diffiaction of the solids. The compounds are thermally stable up to 250°C as indicated by thermogravimetric analysis. Above this temperature, there are losses of mass that correspond to the total losses of the equatorial and the axial ligands considering the RuO2 as the product of thermal decomposition. The [Ru2(adip)2CI], [Ru2(tere)2CI] and [Ru4(dode)5(H2O)2] compounds exhibit large superficial areas, about 170, 100 and 40 m2/g respectively, which could be indicative of microporous structures. These kinds of porous structures can be used as adsorbents for gases, for example. It makes the compounds very interesting for application as new microporous materiaIs, specially for the former which has a superficial area twice as bigger as the second one that is described in the literature as good adsorbent for N2, O2e Ar.
6

Investigations Of Open-Framework Metal Carboxylates, Sulfates And Related Materials

Dan, Meenakshi 07 1900 (has links)
Open-framework materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. Furthermore, these materials exhibit fascinating architectures with unusual bonding and coordination patterns. Besides aluminosilicate zeolites and metal phosphates, metal carboxylates constitute an important family of open-framework structures. In this thesis, results of investigations of a variety of open-framework metal carboxylates, as well as a new family of rare-earth sulfates are presented. More importantly, studies directed towards an understanding of the mechanism of formation of open-framework phosphates and carboxylates and the importance of synthesis parameters like temperature in determining the dimensionality of the products are discussed at length. After providing an introduction to open-framework compounds (Part 1), the thesis (Part 2) presents the results of the investigations of metal carboxylates employing both transition metal and rare-earth metal ions with various organic linkers, ranging from aromatic squarate dianion, aliphatic dicarboxylates like oxalate, adipate, succinate, aminocarboxylates (which contain both the amine and the carboxylate group in the same moiety) and dihydroxybenzoates. Some of these compounds have large channels, for example, both the lanthanum mixed aliphatic dicarboxylates, strontium dihydroxybenzoate etc. Some even show unusual properties, example, a mixed valent iron (II, III) glycinate has a perfect kagome structure and shows unusual magnetic properties, entirely different from those of ordinary Fe(III) kagome structures, copper derivative of 6-amincaproic acid has large channels and remains crystalline porous even after dehydration, a cobalt oxalato-squarate has both oxalate and squarate moiety in the same structure, where the oxalate is produced in situ by the oxidation of squarate under hydrothermal conditions in the basic medium. While the phosphate and the silicate anions are the most common basic building units in open-framework inorganic structures, the possibility of building open architectures with the sulfate anion as the basic building unit has been explored in Part 3. The results have been rewarding and both layered and three-dimensional rare-earth sulfates with large channels and possessing a α-Po structure or (6, 3) nets with continuous M-O-M connectivity in two dimensions have been obtained. The most intriguing question in the area of open-framework structures relates to the mode of formation. In Part 4, the mechanism of formation of both metal phosphates and metal carboxylates have been discussed. This part includes a study of the transformations of four-membered ring phosphates to higher dimensional structures (like 3D sodalite-related structure), through lower-dimensional structures, involving a progressive building-up mechanism. Similar progressive building-up mechanism has also been studied for metal carboxylates. The importance of synthesis parameters like temperature in governing the dimensionality of the products has been studied.
7

Investigations Of Graphene And Open-Framework Metal Carboxylates

Ghosh, Anupama 09 1900 (has links) (PDF)
The thesis contains two parts. Part 1 describes the investigations on graphene and contains five sections. Section 1, gives a brief overview of graphene and other nanocarbons. The other four sections deal with various aspects of single-layer and few-layer graphene such as functionalization and solubilization, surface properties and gas adsorption, molecular charge transfer interaction and some properties and applications. Section 2 describes covalent and noncovalent functionalization and solubilization of few-layer graphene samples prepared by different methods as well as of single-walled carbon nanotubes (SWNTs). It includes covalent functionalization of graphene with organometallic reagents, noncovalent functionalization of graphene and SWNTs with surfactants as well as large aromatic molecules, and exfoliation of few-layer graphene by a water-soluble coronene carboxylate. Section 3 deals with surface properties and gas adsorption (mainly H2 and CO2) of few-layer graphenes. It is found that graphene samples with high surface area can adsorb even more than 3 wt% of H2 at high pressure which makes it promising material for gas-storage applications. Section 4 describes the molecular charge-transfer interaction of single and few-layered graphenes and SWNTs with different electron-donor and -acceptor molecules probed by both ITC measurements and Raman spectroscopy. Electron–acceptor molecules interact more strongly with graphene and SWNTs than the -donor molecules and nature of interaction of metallic SWNTs are different than the as-prepared ones. A Raman study of the interaction of single-layer graphene, prepared by micromechanical cleavage as well as chemical route, with an electron donor molecule such as tetrathiofulvalene (TTF) and an electron acceptor molecule such as tetracyanoethylene (TCNE) is examined. In Section 5, some properties and applications of graphene are discussed. These include fluorescence quenching phenomena observed with few-layer graphene samples on two fluorescent molecules such as coronene and perylene derivatives. Fabrication of a sensing device as well as of FETs prepared from doped and undoped few-layer and single-layer graphene samples forms part of this section. Part 2 of the thesis includes a brief introduction of hybrid open-framework material and synthesis, characterization and crystal structure of various open-framework metal carboxylates, starting with different transition and main group metals. The carboxylic acids used to form these frameworks vary such as simple aliphatic amino acids such as beta-alanine and aspartic acid or simple aliphatic hydroxyl carboxylic acid such as malic acid in its chiral and achiral forms or five-membered heterocyclic aromatic acid, such as imidazole dicarboxylic acid.
8

Cobalt and manganese carboxylates for metal oxide thin film deposition by applying the atmospheric pressure combustion chemical vapour deposition process

Kretzschmar, B. S. M., Assim, K., Preuß, Andrea, Heft, A., Korb, Marcus, Pügner, Marc, Lampke, Thomas, Grünler, B., Lang, Heinrich 11 June 2018 (has links)
Coordination complexes [M(O2CCH2OC2H4OMe)2] (M = Co, 4; M = Mn, 5) are accessible by the anion exchange reaction between the corresponding metal acetates [M(OAc)2(H2O)4] (M = Co, 1; M = Mn, 2) and the carboxylic acid HO2CCH2OC2H4OMe (3). IR spectroscopy confirms the chelating or μ-bridging binding mode of the carboxylato ligands to M(II). The molecular structure of 5 in the solid state confirms a distorted octahedral arrangement at Mn(II), setup by the two carboxylato ligands including their α-ether oxygen atoms, resulting in an overall two-dimensional coordination network. The thermal decomposition behavior of 4 and 5 was studied by TG-MS, revealing that decarboxylation occurs initially giving [M(CH2OC2H4OMe)2], which further decomposes by M–C, C–O and C–C bond cleavages. Complexes 4 and 5 were used as CCVD (combustion chemical vapour deposition) precursors for the deposition of Co3O4, crystalline Mn3O4 and amorphous Mn2O3 thin films on silicon and glass substrates. The deposition experiments were carried out using three different precursor solutions (0.4, 0.6 and 0.8 M) at 400 °C. Depending on the precursor concentration, particulated layers were obtained as evidenced by SEM. The layer thicknesses range from 32 to 170 nm. The rms roughness of the respective films was determined by AFM, displaying that the higher the precursor concentration, the rougher the Co3O4 surface is (17.4–43.8 nm), while the manganese oxide films are almost similar (6.2–9.8 nm).
9

Syntheses, Structures and Characterization of New Coordination Polymer Compounds

Sushrutha, S R January 2016 (has links) (PDF)
The present thesis provides a systematic investigation of coordination polymers of 3d, rare-earth (4f) and main group element (Bi) using both rigid aromatic, flexible aliphatic linkers. Luminescent sensing behavior towards nitro aromatics, metal ions and ferroelectric behavior have been investigated using some of the prepared compounds. The possible usefulness of lone pair on the structure has been investigated using bismuth based coordination polymers. The thermal and optical behavior of lanthanide coordination polymers (Ce, Pr and Nd) have also been studied. Chapter 1 An Overview of Coordination Polymer (CP) Compounds This chapter presents a brief introduction to coordination polymer (CP) compounds. Starting from the brief historical background on coordination compounds, this chapter shed light on some earlier developments in this family of compounds by Yaghi, Robson and others. The usefulness of carboxylate and imidazolates in construction of some important coordination polymer compounds like MOF-5, HKUST-1, ZIFs, MIL-53, UiO-66, CD-MOF-1 etc has been described in detail along with its properties. The coordination polymers exhibit many important properties and some of the properties like sorption, separation, ionic conductivity, catalysis and ferroelectricity have been discussed briefly and summerized. Chapter 1 also provides the general synthetic and characterization approaches that have been employed during the present studies. Chapter 2 Part A: Adenine Based Coordination Polymers with Cyclohexane dicarboxylic acids This chapter presents the synthesis, structure and properties of four new coordination polymers [Zn4(C8H10O4)2.5(C5H4N5)3.2H2O].7H2O.2DMA (I), [Cd3(C8H10O4)2(C5H4N5)2.H2O] (II), [Cd(C8H11O4)2(C5H5N5)2.2H2O] (III), [Cd(C8H10O4)(C7H8N5O).H2O]. 4H2O (IV), (CHDA = cyclohexane dicarboxylic acid, ad = adenine, DMA = dimethylacetamide, 9-HEA = 9-hydroxyethyl adenine). The compound I and II forms three-dimensional structure having distinct arrangements of 1,4-CHDA and adenine units with Zn and Cd metals respectively. The molecular complex unit is observed in compound III with 1,2-CHDA and adenine. Compound IV forms two-dimensional structure with 9-HEA and 1,2-CHDA. The observation of base-pairing interactions in the above compounds is noteworthy. In compounds I, II and IV amino groups are appears to be free and utilized for the detection of nitro aromatic explosives through fluorescence quenching. The results revealed that the emission behavior of the present compounds is greatly influenced by the hydroxyl nitroaromatic analyses like indophenol, dinitrophenyl and trinitrophenols with very low detection limits. The compound I also exhibits considerable sensitivity towards metal ion detection, especially Fe2+/Fe3+, Cr3+, Ag+ and Hg2+ ions in solution. The presence of free nitrogen sites in compound II has been explored for the base catalyzed Knoevenagel condensation reaction, the quantitative yields are observed with various aldehyde substrates. Part B: Adenine Based Coordination Polymer with Oxydiacetic acid: [Cd2(C4H4O5)2(C5H5N5)].H2O.DMA The synthesis, structure and properties of a Cd based coordination polymer with oxydiacetic acid and adenine, [Cd2(C4H4O5)2(C5H5N5)].H2O. DMA is described. The compound has a two-dimensional structure formed by the connectivity involving Cd and oxydiacetic acid. The adenine ligand binds with the Cd metal center through the pyrimidine nitrogen and hangs in the inter layer spaces. The layers are stacked in a ABAB.... fashion and the inter layer spaces occupied by the dimethyl amine and water molecules. The water molecules are very labile and its removal can be accomplished by heating the sample at 100°C, which is also confirmed by the single crystal XRD, PXRD and IR studies. The availability of free amino groups of adenine molecule has been utilized for the detection of nitroaromatics, especially nitrophenols with good sensitivity. The amino group was also found to be useful in catalyzing Knoevenagel condensation reactions. Chapter 3: Rare-Earth Metal Carboxylates: Ln2(µ3-OH)(C4H4O5)2(C4H2O4)].2H2O [Ln=Ce, Pr and Nd] This chapter describes synthesis, structure and properties of series of rare-earth based compounds, [Ln2(µ3-OH)(C4H4O5)2(C4H2O4)].2H2O (Ln = Ce, Pr and Nd). The malic acid and fumaric acid form part of the structure. The lanthanide centers are connected by the malate units to form a two dimensional layers, which are pillared by fumarate units forming the three-dimensional structure. Overall, structure can be described as I2O1 type inorganic in two-dimension (Ln-O-Ln layers) and organic in one dimension. The extra framework water molecules form a dimer and occupy the channels. The robustness of the framework was reflected in terms of facile removal and reinsertion of the water molecules, which is also confirmed by single crystal XRD, variable temperature IR and cyclic TGA study. The presence of water dimers and weakly interacting water chain suggested the possibility of proton migration in these compounds. Proton conductivity studies reveal the conductivity values of ~2.85 x 10-6 Ω-1cm-1 at 98% relative humidity. The optical studies revealed an up-conversion behavior involving more than one photon for the neodymium compound. Chapter 4: Bismuth Carboxylates with Brucite and Fluorite Related Structures The synthesis, structure and properties of three new bismuth based coordination polymers have been described in this chapter. The compounds [C4N2H10][Bi(C7H4NO4)(C7H3NO4)].H2O (I), [Bi(C5H3N2O4) (C5H2N2O4)] (II) and [Bi(µ2-OH)(C7H3NO4)] (III) were isolated employing hydrothermal condition with three different heterocyclicdicarboxylic acids, 3,6-pyridinedicarboxylic acid, 4,5-imidazoledicarboxylic acid and 3,4-pyridinedicarboxylic acid respectively. The structures of all the compounds have linkages between Bi2O2 and the corresponding dicarboxylate forming a simple molecular unit in I, a bilayer arrangement in II and a three-dimensional extended structure in III. The topological arrangement of the nodal building units in the structures resembles brucite related layers in II and fluorite related arrangement in compound III. By utilizing the secondary interactions, the structure of III can be correlated to a Kagome related net. The observation of such classical inorganic related structures in the bismuth carboxylates is noteworthy. Heterogeneous catalytic studies indicate Lewis acidic nature in the bismuth center in all three compounds. Chapter 5: Solvent dependent Delamination, Restacking and Ferroelectric studies in a Two-Dimensional Compound [NH4][Ag3(C9H5NO4S)2(C13H14N2)2].8H2O This chapter describes synthesis, structure, water dependent delamination/restacking and ferroelectric behavior in a layered coordination polymer compound, [NH4][Ag3(C9H5NO4S)2(C13H14N2)2].8H2O. The compound has a two-dimensional structure with the water molecules occupying the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which accompany the crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and re-stacking of the layers. This transformation has also been investigated by in-situ IR and PXRD studies. The presence of a natural dipole (anionic framework and cationic ammonium ions) along with the non-centrosymmetric space group gives rise to a room-temperature ferroelectric behavior to the compound with saturation polarization (Ps) of 1.95 μC/cm2 and remnant polarization of 0.63 μC/cm2. The temperature dependent dielectric measurements indicate that the ferroelectric-paraelectric transformation occurs at 320 K. The ferroelectric-paraelectric transformation also follows the crystalline-amorphous-crystalline transitions.

Page generated in 0.0787 seconds