Spelling suggestions: "subject:"metal organic"" "subject:"fetal organic""
391 |
Synthesis and Evaluation of PtW Solid-Solution Nanoparticles and Bioactive Metal-Organic Frameworks / PtW固溶体ナノ粒子および生理活性金属-有機構造体の合成と評価Kobayashi, Daiya 24 January 2022 (has links)
京都大学 / 新制・論文博士 / 博士(理学) / 乙第13460号 / 論理博第1577号 / 新制||理||1683(附属図書館) / (主査)教授 北川 宏, 教授 吉村 一良, 教授 竹腰 清乃理 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DGAM
|
392 |
Development of Cellulose-Titanium dioxide-Porphyrin Nanocomposite Films with High-barrier, UV-blocking, and Visible Light-Responsive Antimicrobial FeaturesLovely, Belladini 03 June 2024 (has links)
The packaging does not serve as a mere containment but also can be designed to play a key role in preserving the product from quality-deteriorating factors, including oxygen, light irradiation, and foodborne pathogenic microorganisms (e.g., Escherichia coli).
There has been a growing interest in employing ultra-porous metal-organic frameworks (MOF) with visible light-responsive antibacterial mechanisms to generate reactive oxygen species (ROS) that can eliminate bacteria via an oxidative burst. MOF is made of inorganic metal ions/nodes/clusters/secondary building units linked by organic bridge ligands, where titanium dioxide (TiO2) and tetrakis(4-carboxyphenyl)porphyrin) (TCPP) were selected for these components, respectively. TiO2 is an exceptional UV-A/B/C-blocker; meanwhile, TCPP dye performs a remarkable photocatalytic ability even under visible light, on top of its macro-heterocyclic structure that is ideal as a MOF linker. Both have good compatibility but suffer from the notorious tendency to self-quench/aggregate. The incorporation of MOF-based conjugates into a polymeric matrix, like cellulose, is among the proven-successful solutions. Cellulose is the Earth's most abundant and naturally biodegradable, and cellulose nanofibril (CNF) was particularly chosen for its high specific surface area and surface activity. However, a straightforward, cheap, and environmentally friendly approach of multicycle homogenization (0-25 passes) was conducted to solve neat cellulose's challenge of natural hydrophilicity, where low pressure (<10 MPa) was applied to prevent the common over-shearing effect. The antibacterial efficacy of CNF films functionalized with TiO2-TCPP conjugate on inhibiting E. coli growth was analyzed with and without light of different intensities (3000 and 6000 lux). The positive impacts of CNFs' promoted fibrillation and subsequent inter/intra-molecular hydrogen bonding post-homogenization were evidenced in an array of functional properties, i.e., crystallinity, TiO2-TCPP conjugate dispersion, surface smoothness, mechanical properties, thermal stability, hydrophobicity, oxygen barrier (comparable to ethylene-vinyl alcohol (EVOH), a commercial high-barrier polymer), and 100%-antibacterial rate (under 6000 lux after 72 hours). Varying optimum cycles of homogenization demonstrated the prospect of the proposed homogenization approach in preparing CNF with diverse processability and applicability. These findings also exhibited a promising potential for a myriad of high-barrier, UV-blocking, and/or visible light-responsive antibacterial film applications, including food packaging and biomedical. / Doctor of Philosophy / Packaging is useful not only as a container but can also be designed to help prevent products from being spoiled due to various reasons such as oxidation, light, and bacterial contamination. Researchers have discovered the promising antibacterial feature of the metal-organic framework (MOF). Packaging made with MOF technology can harness light and oxygen in the environment to produce a special form of oxygen called reactive oxygen species (ROS) that can kill unwanted bacteria. MOF is an extremely porous sponge-like material made of two ingredients: an inorganic metal cluster and an organic linker; in this study, titanium dioxide (TiO2) and a porphyrin called TCPP were selected, respectively. TiO2 is an excellent ultraviolet blocker, while TCPP has a unique, ring-like geometry that is ideal for use as a linker and an antimicrobial feature that works well under the visible light spectrum. The pair are compatible but still suffer from MOF's notorious challenge, where it tends to clump together because of its tiny size. To resolve this problem, TiO2-TCPP MOF can be deposited evenly in a cast made of polymer.
Cellulose has been proven to work effectively as a polymeric cast; moreover, it is natural, biodegradable, and in abundant supply. A type of nanosized cellulose—cellulose nanofibril (CNF)—was specifically chosen because its high surface area and activity are useful when blended with other materials. However, cellulose is naturally a poor water-repellant that is not ideal for packaging applications. As a solution, cellulose can be treated with a homogenization technique by passing the material through a very narrow hole under high pressure. Homogenization can be problematic as it possibly damages the cellulose's structure, and its high pressure can also be expensive and energy consuming.
Therefore, low pressure with multiple cycles was applied in this work. CNF-TiO2-TCPP films were tested for their ability to slow down E. coli bacteria growth with and without light of varying brightness to compare its light-sensitive antimicrobial feature.
Homogenization was found helpful in producing higher-quality CNF, which improved several of the film's final characteristics, including an even material dispersion, structural order, smoothness, strength, heat resistance, and water repellency. Most importantly, it produced films with oxygen barrier ability comparable to commercial high-barrier plastics and completely eliminated bacteria after 72 hours. The optimum number of homogenization cycles was found to be dependent on the desired characteristics and application. Overall, these findings carry a promising potential for a variety of applications, including food packaging and the biomedical field.
|
393 |
Investigations of Electron Transport Properties in Metal-Organic Frameworks for Catalytic ApplicationsAhrenholtz, Spencer Rae 23 August 2016 (has links)
Metal-organic frameworks (MOFs) have attracted much attention in the past few decades due to their ordered, crystalline nature, synthetic tunability, and porosity. MOFs represent a class of hybrid inorganic-organic materials that have been investigated for their applications in areas such as gas sorption and separation, catalysis, drug delivery, and electron or proton conduction. It has been the goal of my graduate research to investigate MOFs for their ability to transport electrons and store and separate gases for ultimate catalytic applications in alternative energy generation. I aim to provide new insight into the design and development of stable MOFs for such applications.
We first investigated a cobalt(III) porphyrin based MOF comprised of Co(II)-carboxylate nodes, designated as CoPIZA, for its electron transport capabilities. Thin films of CoPIZA were formed solvothermally on conductive fluorine-doped tin oxide (FTO) substrates and used for electrochemical characterization. Electrochemistry coupled with spectroscopic analysis of the CoPIZA film revealed reversible reduction of the cobalt centers of the porphyrin linkers with maintenance of the overall framework structure. The mechanism of charge transport throughout the film was facilitated by redox hopping of electrons between the metal centers of the nodes and linkers.
The ability to incorporate desired properties, such as pore functionalities or open metal centers, into frameworks makes them attractive for applications in separation of gaseous mixtures, such as CO2/N2 from combustion power plants. To investigate the selective adsorption properties, we performed gas sorption measurements on bulk MOF materials to determine their affinity toward CO2. Two Zn-based MOFs containing 2,5-pyridine dicarboxylate linkers were prepared in our laboratory and contained unsaturated Zn(II) metal centers, which possess a binding site on the metal without an activation procedure to remove bound solvent molecules. These MOFs were compared to the well-known Zn-based MOF-69C containing 1,4-benzene dicarboxylate linkers. Thermodynamic analysis of the gas sorption data revealed that the mechanism of CO2 binding involved the coordinatively unsaturated Zn(II) center. The microporous MOF also demonstrated selectivity for CO2 over N2 under the same conditions. As these materials were able to uptake CO2, their ability to transport electrons was also investigated for ultimate applications in catalysis. Electrochemical impedance spectroscopy was performed on the bulk MOF powders and was coupled with solid-state nuclear magnetic resonance spectroscopy. These results determined that the conduction mechanism proceeded via solvent molecules within the pores of the framework.
The catalytic ability toward water oxidation of two MOFs was investigated electrochemically. Initial studies focused on a cobalt-based MOF comprised of 2-pyrimidinolate (pymo) linkers, designated as Co(pymo)2, which was prepared on FTO via drop-casting and used for electrochemical experiments. At applied anodic potentials, the CoII centers of Co(pymo)2 became oxidized to form a Co-oxide species on the electrode surface, which was found to be the active catalysis for water oxidation. Further investigations utilized a notably more stable Zr-based MOF with nickel(II) porphyrin linkers, designated as PCN-224-Ni. PCN-224-Ni was prepared solvothermally on FTO and used directly for electrochemical water oxidation. The mechanism of water oxidation at PCN-224-Ni proceeds via oxidation of the porphyrin macrocycle followed by binding of water to the Ni(II) center. Cooperative proton transfer to the Zr-oxo node facilitated water oxidation with the eventual release of O2. Thorough characterization revealed that PCN-224-Ni retained its structural integrity over the course of electrochemical catalysis.
These results have allowed us a deeper understanding of the mechanisms of electron transport and conduction throughout frameworks. Specifically, the incorporation of metalloporphyrin molecules with redox active metal centers coupled with the presence of redox active metal nodes resulted in redox hopping charge transport throughout the MOF. In addition, the presence of solvent molecules in the pores of the framework provided an extended network for charge transport. We have gained insight into the structure-function relationship of MOFs for applications in selective gas sorption, where an unsaturated metal center serves as the binding site for gas molecules. Finally, through selection of the components that comprise the framework, a stable metalloporphyrin MOF was found to be capable of electrochemically facilitating the water oxidation reaction. As a result, we have gained valuable insight into the properties of frameworks necessary for charge transport and stability, which will allow for further improvements in the smart design of MOFs for catalytic applications. / Ph. D.
|
394 |
Investigations of Electron, Ion, and Proton Transport in Zirconium-based Metal-Organic FrameworksCelis Salazar, Paula Juliana 16 July 2018 (has links)
Metal-Organic Frameworks (MOFs) are porous materials consisting of organic ligands connected by inorganic nodes. Their structural uniformity, high surface area, and synthetic tunability, position these frameworks as suitable active materials to achieve efficient and clean electrochemical energy storage. In spite of recent demonstrations of MOFs undergoing diverse electrochemical processes, a fundamental understanding of the mechanism of electron, proton, and ion transport in these porous structures is needed for their application in electronic devices. The current work focuses on contributing to such understanding by investigating proton-coupled electron transfer, capacitance performance, and the relative contribution of electron and ionic transport in the voltammetry of zirconium-based MOFs.
First, we investigated the effects that the quinone ligand orientation inside two new UiO-type metal-organic frameworks (2,6-Zr-AQ-MOF and 1,4-Zr-AQ-MOF) have on the ability of the MOFs to achieve proton and electron conduction. The number of electrons and protons transferred by the frameworks was tailored in a Nernstian manner by the pH of the media, revealing different electrochemical processes separated by distinct pKa values. In particular, the position of the quinone moiety with respect to the zirconium node, the effect of hydrogen bonding, and the amount of defects in the MOFs, lead to different PCET processes. The ability of the MOFs to transport discrete numbers of protons and electrons, suggested their application as charge carriers in electronic devices.
With that purpose in mind, we assembled 2,6-Zr-AQ-MOF and 1,4-Zr-AQ-MOF into two different types of working electrodes: a slurry-modified glassy carbon electrode, and as solvothermally-grown MOF thin films. The specific capacitance and the percentage of quinone accessed in the two frameworks were calculated for the two types of electrodes using cyclic voltammetry in aqueous buffered media as a function of pH. Both frameworks showed an enhanced capacitance and quinone accessibility in the thin films as compared to the powder-based electrodes, while revealing that the structural differences between 2,6-Zr-AQ-MOF and 1,4-Zr-AQ-MOF in terms of defectivity and the number of electrons and protons transferred were directly influencing the percentage of active quinones and the ability of the materials to store charge.
Additionally, we investigated in detail the redox-hopping electron transport mechanism previously proposed for MOFs, by utilizing the chronoamperometric response (I vs. t) of three metallocene-doped metal-organic frameworks (MOFs) thin films (M-NU-1000, M= Fe, Ru, Os) in two different electrolytes (TBAPF6 and TBATFAB). We were able to elucidate, for the first time, the diffusion coefficients of electrons and ions (De and Di, respectively) through the structure in response to an oxidizing applied bias. The application of a theoretical model for solid state-voltammetry to the experimental data revealed that the diffusion of ions is the rate-determining step at the three different time stages of the electrochemical transformation. Remarkably, the trends observed in the diffusion coefficients (De and Di) of these systems obtained in PF61- and TFAB1- based electrolytes at the different stages of the electrochemical reaction, demonstrated that the redox hopping rates inside frameworks can be controlled through the modifications of the self-exchange rates of redox centers, the use of large MOF channels, and the utilization of smaller counter anions. These structure-function relationships provide a foundation for the future design, control, and optimization of electronic and ionic transport properties in MOF thin films. / PHD / The necessity of implementing new energy storage systems that enable the utilization of clean energy in diverse technologies such as electric vehicles and smart power grids, has generated great research efforts in the field of materials science. In particular, the development of nanoscale-based materials that can be utilized in batteries and supercapacitors is essential for achieving effective and clean electrochemical energy storage. Two of the main desired properties for such materials to be employed as electrodes in energy storage devices are high surface area and the possibility of incorporating redox-active moieties that are able to store electricity.
Metal-Organic Frameworks (MOFs) are a relatively new kind of porous materials with high surface area and structural uniformity, consisting of organic ligands connected by inorganic nodes. The application of these materials in charge transport and storage is still in its early stages. Therefore, fundamental understanding of the mechanism of electron, proton, and ion transport in MOFs is necessary for a rational design of these porous structures. In order to contribute to such understanding, the present work is focus on two main concepts: (1) elucidating the effect that the tridimensional orientation of redox moieties inside the MOF could have on the charge storage performance and the ability of the material to achieve proton and electron conduction; and (2) quantifying for the first time the individual relative contribution of electron and ionic transport in MOF materials.
|
395 |
Metal-cyclam based Metal-Organic Frameworks for CO₂ Chemical TransformationsZhu, Jie 20 June 2018 (has links)
Designing new materials for CO₂ capture and utilization is one of the most challenging research topics. Metal-organic frameworks (MOFs) are one of the most efficient CO₂ adsorbents, as well as an emerging class of heterogeneous catalysts for CO₂ chemical transformations. Highlighted by their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities, MOFs can serve as highly stable and reusable heterogeneous catalysts and provide a great platform to explore the structure-function relationships for transforming CO₂ into useful chemicals. In this dissertation, we aim to develop a new class of metal-cyclam based robust MOFs as porous materials for CO₂ uptake as well as efficient catalysts for CO₂ chemical transformations, including CO₂ chemical fixation, CO₂ photo- and electroreduction.
Chapter 1 introduces the concept and main challenges of CO₂ capture and conversion. The potential of metal-cyclam complexes as molecular catalysts for CO₂ conversion is also mentioned. The current state of the art in designing stable MOFs and azamacrocyclic-based MOFs is briefly discussed. Finally, the strategies, challenges and future outlook of using MOF as catalysts in CO₂ chemical transformation are summarized.
Metal-organic frameworks (MOFs) as highly ordered, tunable hybrid materials have shown great promise in photon collection, energy transfer and photocatalytic reactions. In Chapter 2, the fundamental principles of energy transfer in the condensed phase are summarized, and a series of studies in light-harvesting, excited state quenching and photo-excited reactivity occurring within ruthenium-polypyridyl-doped zirconium MOFs are reviewed. The application of MOFs in energy conversion devices such as dye-sensitized solar cells (DSSC) is also discussed.
Chapter 3 reports two new robust 3D porous metal-cyclam based Zr-MOFs, VPI-100 (Cu) and VPI-100 (Ni) with potential as heterogeneous catalysts for CO2 chemical fixation. The frameworks are prepared by a modulated synthetic strategy and the structure highlighted by eight-connected Zr₆ clusters and metallocyclams as organic linkers. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO₂ uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO₂ with epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.
A follow-up study of CO₂ chemical fixation using Hf analogs of VPI-100 is presented in Chapter 4. Structural characterization and catalytic performance of Hf-VPI-100 are summarized. Moreover, a detailed comparison of VPI-100 and Hf-VPI-100 is made. In situ powder X-ray diffraction (PXRD), quartz crystal microbalance (QCM) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) have been used to probe the interaction between the guest molecules (CO₂/epoxide) and Hf-VPI-100. For CO₂, no specific chemical binding sites in MOFs has been observed and the uptake of CO₂ does not change the crystal structure of Hf-VPI-100. Both QCM and DRIFTs revealed the irreversible binding between the framework and 1,2-epoxybutane. The epoxide uptake per unit cell of VPI-100 MOFs and diffusion coefficients have been calculated by QCM analysis.
Transition metal complexes capable of visible light-triggered cytotoxicity are appealing potential candidates for photodynamic therapy (PDT) of cancer. In Chapter 5, two monometallic polyazine complexes, [(Ph₂phen)₂Ru(dpp)]²⁺ and [(Ph₂phen)₂Os(dpp)]⁺ (Ph₂phen = 4,7-diphenyl-1,10-phenanthroline; dpp =2,3-bis(2-pyridyl)pyrazine), were synthesized, characterized and studied as light activated drugs to kill rat malignant glioma F98 cells. Both compounds display strong absorption in visible spectrum, oxygen-mediated DNA and BSA photocleavage and significant photocytotoxicity under blue light irradiation along with negligible activity in the dark. The compounds show approximately five-fold higher cytotoxicity compared the traditional chemotherapeutic drug, cisplatin. Furthermore, [(Ph₂phen)₂Os(dpp)]⁺ shows promising photocytotoxicity in F98 rat malignant glioma cells within the phototherapeutic window with an IC50 value of (86.07±8.48) µM under red light (625 nm) irradiation.
In Chapter 6, the mixed-metal supramolecular complex, [(Ph₂phen)₂Ru-(dpp)PtCl₂]²⁺, was found to display significant DNA modification, cell growth inhibition, and toxicity towards F98 malignant glioma cells following visible light irradiation. The design of this complex has a significantly higher potential for membrane permeability than three other FDA-approved anti-cancer agents, including cisplatin, and exhibited a dramatic ten-fold higher uptake by F98 cells than cisplatin in a two-hour window. Based on studies with a rat glioma cell line, the compound has very low cytotoxicity in the dark, but results in substantial cell death upon light treatment. The complex is thus among the first to exhibit all the hallmarks of a very promising new class of PDT agents. / Ph. D. / Increased carbon dioxide (CO₂) emissions have triggered a series of environmental effects, including global warming and ocean acidification. Scientists are trying to develop new materials to capture and convert CO₂ into useful chemical products. However, the main challenge is that CO₂, the gas generated upon burning fossil fuels, has strong C=O bonds that are hard to break. In other words, it is too stable to be easily changed into other compounds. A class of highly porous materials known as metal-organic frameworks (MOFs) possess significant potential for CO₂ adsorption uptake and chemical fixation. MOFs are metal ions or clusters held together by organic linkers to make highly ordered, crystalline 3D structures with tunable porosity and functionality. The design and synthesis of MOFs is similar to playing with Legos at the molecular level; you need to pick the right pieces (metal nodes and linkers) to get your desired structure. In this dissertation, we aim to develop a new class of macrocycle complexes based stable MOFs as porous materials for CO₂ uptake as well as efficient catalysts for CO₂ chemical transformations.
We have developed two new stable three dimensional porous frameworks, VPI-100 (Cu) and VPI-100 (Ni) as catalysts for CO₂ chemical fixation. The new 3D robust MOFs named VPI-100 (VPI = Virginia Polytechnic Institute) are assembled by the reaction of zirconium oxo clusters and linkers bearing metal complexes. Using the metal complexes as the linker provides additional metal active sites in the framework that can act as accessible catalytic centers for CO₂ conversion. The VPI-100 MOFs are not only able to convert CO₂ to cyclic carbonates (important industrial chemicals) in high efficiency (~ 98%), but also can be reused for multiple cycles. The heterogeneous catalyst can be easily recovered from the reaction mixture by centrifugation and the active metal centers are earth-abundant transition metals (Cu and Ni), which are cost effective. Additionally, VPI-100 MOFs also show high CO₂ uptake capacity (up to ~10 wt%) at ambient pressure. Since the MOFs can enhance the local concentration of CO₂ around the active catalytic centers located inside the pores of the framework, these materials could be used as catalysts for flow chemistry, which is widely used in industry.
We further investigated the CO₂ chemical fixation using Hf analogs of VPI-100. Structural characterization and catalytic performance of Hf-VPI-100 are summarized. Moreover, a detailed comparison of VPI-100 and Hf-VPI-100 is made. Different analytical techniques have been used to further understand the reaction mechanism as well as the interaction between the CO₂/epoxide and the frameworks. These insights would help us to design new MOFs as better catalysts for practical applications.
|
396 |
Optoelectronically Active Metal-Inorganic Frameworks and Supramolecular Extended SolidsIvy, Joshua F. 08 1900 (has links)
Metal-organic frameworks (MOFs) have been intensely researched over the past 20 years. In this dissertation, metal-inorganic frameworks (MIFs), a new class of porous and nonporous materials using inorganic complexes as linkers, in lieu of traditional organic linkers in MOFs is reported. Besides novel MIF regimes, the previously described fluorous MOF "FMOF-1", is re-categorized herein as "F-MIF1". F-MIF-1 is comprised of [Ag4Tz6]2- (Tz = 3,5-bis-trifluoromethyl-1,2,4-triazolate) inorganic clusters connected by 3-coordinate Ag+ metal centers. Chapter 2 describes isosteric heat of adsorption studies of F-MIF1 for CO2 at near ambient temperatures, suggesting promise for carbon capture and storage. We then successfully exchanged some of these Ag(I) centers with Au(I) to form an isostructural Au/F-MIF1. Other, nonporous MIFs have been synthesized using Ag2Tz2 clusters with bridging diamine linkers 4,4'-bipyridine, pyrazine, and a Pt(II) complex containing two oppositely-situated non-coordinating pyridines. This strategy attained luminescent products better-positioned for photonic devices than porous materials due to greater exciton density.
Chapter 3 overviews work using an entirely inorganic luminescent complex, [Pt2(P2O5)4]4- (a.k.a. "PtPOP") to form new carbon-free MIFs. PtPOP is highly luminescent in solution, but as a solid shows poor quantum yield (QY ~0.02) and poor stability under ambient conditions. By complexing PtPOP to various metals, we have shown a dramatic enhancement in its solid-state luminescence (by an order of magnitude) and stability (from day to year scale). One embodiment (MIF-1) demonstrates microporous character.
Chapter 4 overviews the design and application of new MIF linkers. Pt complexes based upon (pyridyl)azolates, functionalized with carboxylic acid groups, have been synthesized. These complexes, and their esterized precursors, show strong luminescence on their own. They have been used to generate new luminescent MIFs. Such new MIFs may be useful toward future inorganic (LEDs) or organic (OLEDs) light-emitting diodes, respectively. The electronic communication along their infinite coordination structures is desirable for color tuning and enhanced conductivity functions, compared to the small molecules used in such technologies, which rely on intermolecular interactions for these functions.
|
397 |
Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and ConversionLin, Chun-Yu 12 1900 (has links)
In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of metal coordinated frameworks for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Gibb's free energy, overpotential, charge transfer and ligands effect are evaluated. The charge transfer analysis shows the positive charges on the metal coordinated frameworks play an essential role in improving the electrochemical properties of the metal coordinated frameworks. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of metal coordinated frameworks as efficient catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal coordinated frameworks for energy storage and conversion. The success of the design principles provides a better understanding of the mechanism behind ORR and OER and a screening approach for the best catalyst for energy storage and conversion.
|
398 |
Optical and structural properties of Er-doped GaN/InGaN materials and devices synthesized by metal organic chemical vapor depositionUgolini, Cristofer Russell January 1900 (has links)
Doctor of Philosophy / Department of Physics / Hongxing Jiang / The optical and structural properties of Er-doped GaN/InGaN materials and devices synthesized by metal organic chemical vapor deposition (MOCVD) were investigated. Er-doped GaN via MOCVD emits a strong photoluminescence (PL) emission at 1.54 um using both above and below-bandgap excitation. In contrast to other growth methods, MOCVD-grown Er-doped GaN epilayers exhibit virtually no visible emission lines. A small thermal quenching effect, with only a 20% decrease in the integrated intensity of the 1.54 um PL emission, occurred between 10 and 300 K. The dominant bandedge emission of Er-doped GaN at 3.23 eV was observed at room temperature, which is red-shifted by 0.19 eV from the bandedge emission of undoped GaN. An activation energy of 191 meV was obtained from the thermal quenching of the integrated intensity of the 1.54 um emission line.
It was observed that surface morphology and 1.54 um PL emission intensity was strongly dependent upon the Er/NH3 flow rate ratio and the growth temperature. XRD measurements showed that the crystalline ordering of the (002) plane was relatively unperturbed for the changing growth environment. Least-squares fitting of 1.54 um PL measurements from Er-doped GaN of different growth temperatures was utilized to determine a formation energy of 1.82 ± 0.1 eV for the Er-emitting centers.
The crystalline quality and surface morphology of Er-doped InGaN (5% In fraction) was nearly identical to that of Er-doped GaN, yet the PL intensity of the 1.54 um emission from Er-doped InGaN (5% In fraction) was 16 x smaller than that of Er-doped GaN. The drop in PL intensity is attributed to the much lower growth temperature in conjunction with the high formation energy of the Er- emitting centers. Er-doped InGaN grown at fixed growth temperature with different growth pressures, NH3 flow rates, and Ga flow rates was also investigated, and showed that increased In fractions also resulted in a smaller 1.54 um PL intensity.
Er-doped InGaN p-i-n diodes were synthesized and tested. The electroluminescence (EL) spectra under forward bias shows strong Er based emission in the infrared and visible region. The different emission lines from EL spectra in contrast to PL spectra implies different excitation methods for the Er based emission in the p-i-n diode than in the PL excited epilayer.
|
399 |
New nitric oxide releasing materialsMcKinlay, Alistair C. January 2010 (has links)
The aim of this thesis was to examine the ability of metal organic frameworks (MOFs) to store and controllably release biologically significant amounts of nitric oxide (NO). Initial work involved the synthesis of a series of isostructural MOFs, known as M-CPO-27, which display coordinatively unsaturated metal sites (CUSs) when fully activated (guest solvent molecules both coordinated and uncoordinated to the metal atom are removed). Two of these frameworks (Ni and Co CPO-27) displayed exceptional performance over the entire cycle of activation, storage and delivery showing the largest storage and release of NO of any known porous material (up to 7 mmolg⁻¹). These frameworks would therefore be considered for initial research into the formulation of MOFs, for possible use in medical applications. It was shown that they still release large amounts of NO even when placed inside porous paper bags, creams or hydrocolloids. The other versions of M-CPO-27 also displayed significant adsorption of NO however they show poor total NO release. It was also shown that it is possible to synthesise both Ni and Co CPO-27 using microwave synthesis without any detrimental effect to the porous structure. Several iron-based MOFs were also investigated for NO storage and release. The results showed that Fe MIL-88 based structures adsorb good amounts of NO but only release a small amount of the irreversibly adsorbed NO. Two successfully amine grafted giant pore MOFs were then investigated to attempt to improve the NO adsorption and release. This result was not observed however, due to the poor total amine grafting coverage and pore blockage resulting from the amines. In-situ IR studies reveal that when exposed to NO, activated Fe MIL-100 forms a chemical bond with the NO. The studies also displayed that when water is then allowed to attempt to replace the NO that only a small amount of NO is actually released, the majority of the NO either remains chemically bonded to the Fe atom or forms N₂O in conjunction with a Fe-OH group. Other MOFs were also successfully synthesised and characterised for NO storage and release. Both Ni succinate and Ni STA-12 display good adsorption and excellent release of NO. This indicates that Ni based MOFs show the best results for NO adsorption and release. In the conclusion of the thesis I am able to categorise the NO release ability of MOFs based on composition and formulate a theory as to why this happens.
|
400 |
Evaluation des Metal-Organic Frameworks en adsorption et séparation des hydrocarburesPeralta, David 02 February 2011 (has links) (PDF)
L'objectif de cette thèse était d'évaluer quelques Metal-Organic Frameworks (MOFs), choisis en fonction de leur taille de pores, de leur volume poreux et de leur stabilité thermique, en adsorption et séparation des hydrocarbures. Pour étudier le comportement général des MOFs nous avons choisi des MOFs avec des centres métalliques insaturés, des MOFs à charpente anionique et des ZIFs neutres et avons étudié leur sélectivité en séparation de trois familles d'hydrocarbures, à savoir alcanes, alcènes, aromatiques. Les MOFs à centre métallique insaturé se comportent généralement comme des zéolithes polaires, les ZIFs comme des zéolithes apolaires et/ou comme des tamis moléculaires. Les adsorbants les plus prometteurs sont testés sur des séparations d'intérêt industriel telles que la séparation des isomères de xylène, la séparation des paraffines linéaires, monobranchées et di-branchées et l'adsorption sélective du thiophène en vu de l'évaluation de ces adsorbants en désulfuration des essences.
|
Page generated in 0.0737 seconds