• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propuesta de implementación de un sistema de pintura electrostática para piezas metálicas utilizadas en tableros y celdas eléctricas

Yarasca Martinez, Jasir Jonathan, Espinoza Oscco, Mónica Emilia January 2015 (has links)
La presente investigación desarrolla un plan de mejora del área de pintura para una empresa fabricante de tableros y celdas eléctricas, que desea implementar un sistema que mejore la línea de producción de las piezas metálicas y consecuentemente reduzca los tiempos de pintado, secado y reprocesos generados que actualmente se pueden encontrar en la empresa. Además de permitir una mejor atención al cliente en cuanto a las entregas oportunas del producto terminado y regular los procesos de producción mediante la propuesta del nuevo sistema y mejoras. Por medio de la propuesta de implementación de un sistema de pintura Electrostática, también denominada pintura en polvo, se podrá dar un cambio sustancial tanto del entorno laboral, como productivo y económico, estableciendo medidas adecuadas que permitan trabajar de forma eficiente en el proceso de pintura. Se inicia con un mapeo, toma de datos y evidencias relevantes que nos indican las deficiencias en el área a estudiar. Es así que se plantea demostrar que un sistema de pintura electrostática mejorará el proceso del área de pintura. Además se muestra el costo de la inversión que representa la implementación del sistema de pintura electrostática y los beneficios al cabo de la propuesta de implementación, terminando con las conclusiones y recomendaciones al finalizar el proyecto de investigación. Se recogieron datos del año 2015, del sistema que se utiliza actualmente en el proceso de pintura, comparando resultados con el sistema de pintura propuesto. The present investigation develops an improvement plan to the painting area, for the manufacture of electrical panels and cells, that it wants to implement a system to improve the production line of metal parts and consequently reduce times of painting, drying and rework, usually generated in the company. Also to permit a better customer service in terms of timely deliveries of finished product and regulate the production processes by proposing the new system and improvements. By the proposal implementation of a system of electrostatic painting, also called as powder, it can make an important change between work environment as productive and economical, establishing appropriate measures and to permit work efficiently in the painting process . It starts with a mapping, data collection and relevant evidence which indicate deficiencies in the area to study. It's like that propose illustrated a system that improve electrostatic painting process of painting area. Also the cost of the investment required to implement the system of electrostatic painting and benefits of the proposal after the implementation, ending with conclusions and recommendations at the end of the research project it is shown. The information was collected in 2015, of the actual system used in the painting process, comparing results with the proposed system.
2

Automatické generování pozic optického skeneru pro digitalizaci plechových dílů / Automatic Generation of Scanning Positions for Sheet Metal Parts Digitization

Koutecký, Tomáš January 2015 (has links)
This thesis deals with the development of a new methodology for automatic generation of scanning positions based on a computer model of the part for digitization of sheet metal parts. Manufacture and related inspection of sheet metal parts are closely connected to automotive industry. Based on increasing general requirements on accuracy, there is also a requirement for accurate inspection of manufactured parts in serial-line production. Optical 3D scanners and industrial robots are used more often for that purpose. Measuring positions for accurate and fast digitization of a part need to be prepared as the manufacturing of the new part begins. Planning of such positions is done manually by positioning of the industrial robot and saving the positions. The planning of positions proposed by this methodology is done automatically. A methodology of positions planning, their simulation for true visibility of the part elements using reflectance model and a simulation of the positions for robot reachability is presented in this thesis. The entire methodology is implemented as a plug-in for the Rhinoceros software. High reduction of time in positions planning compared to the manual approach was observed in the performed experiments.
3

Development of a novel nitriding plant for the pressure vessel of the PBMR core unloading device / Ryno Willem Nell.

Nell, Ryno Willem January 2010 (has links)
The Pebble Bed Modular Reactor (PBMR) is one of the most technologically advanced developments in South Africa. In order to build a commercially viable demonstration power plant, all the specifically and uniquely designed equipment must first be qualified. All the prototype equipment is tested at the Helium Test Facility (HTF) at Pelindaba. One of the largest components that are tested is the Core Unloading Device (CUD). The main function of the CUD is to unload fuel from the bottom of the reactor core to enable circulation of the fuel core. The CUD housing vessel forms part of the reactor pressure boundary. Pebble-directing valves and other moving machinery are installed inside its machined inner surface. It is essential that the interior surfaces of the CUD are case hardened to provide a corrosion- and wear-resistant layer. Cold welding between the moving metal parts and the machined surface must also be prevented. Nitriding is a case hardening process that adds a hardened wear- and corrosion-resistant layer that will also prevent cold welding of the moving parts in the helium atmosphere. Only a few nitriding furnaces exist that can house a forging as large as the CUD of the PBMR. Commercial nitriding furnaces in South Africa are all too small and have limited flexibility in terms of the nitriding process. The nitriding of a vessel as large as the CUD has not yet been carried out commercially. The aim of this work was to design and develop a custom-made nitriding plant to perform the nitriding of the first PBMR/HTF CUD. Proper process control is essential to ensure that the required nitrided case has been obtained. A new concept for a gas nitriding plant was developed using the nitrided vessel interior as the nitriding process chamber. Before the commencement of detail design, a laboratory test was performed on a scale model vessel to confirm concept feasibility. The design of the plant included the mechanical design of various components essential to the nitriding process. A special stirring fan with an extended length shaft was designed, taking whirling speed into account. Considerable research was performed on the high temperature use of the various components to ensure the safe operation of the plant at temperatures of up to 600°C. Nitriding requires the use of hazardous gases such as ammonia, oxygen and nitrogen. Hydrogen is produced as a by-product and therefore safety was the most important design parameter. Thermohydraulic analyses, i.e. heat transfer and pressure drop calculations in pipes, were also performed to ensure the successful process design of the nitriding plant. The nitriding plant was subsequently constructed and operated to verify the correct design. A large amount of experimental and operating data was captured during the actual operation of the plant. This data was analysed and the thermohydraulic analyses were verified. Nitrided specimens were subjected to hardness and layer thickness tests. The measured temperature of the protruding fan shaft was within the limits predicted by Finite Element Analysis (FEA) models. Graphs of gas flow rates and other operation data confirmed the inverse proportionality between ammonia supply flow rate and measured dissociation rate. The design and operation of the nitriding plant were successful as a nitride layer thickness of 400 μm and hardness of 1 200 Vickers hardness (VHN) was achieved. This research proves that a large pressure vessel can successfully be nitrided using the vessel interior as a process chamber. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
4

Development of a novel nitriding plant for the pressure vessel of the PBMR core unloading device / Ryno Willem Nell.

Nell, Ryno Willem January 2010 (has links)
The Pebble Bed Modular Reactor (PBMR) is one of the most technologically advanced developments in South Africa. In order to build a commercially viable demonstration power plant, all the specifically and uniquely designed equipment must first be qualified. All the prototype equipment is tested at the Helium Test Facility (HTF) at Pelindaba. One of the largest components that are tested is the Core Unloading Device (CUD). The main function of the CUD is to unload fuel from the bottom of the reactor core to enable circulation of the fuel core. The CUD housing vessel forms part of the reactor pressure boundary. Pebble-directing valves and other moving machinery are installed inside its machined inner surface. It is essential that the interior surfaces of the CUD are case hardened to provide a corrosion- and wear-resistant layer. Cold welding between the moving metal parts and the machined surface must also be prevented. Nitriding is a case hardening process that adds a hardened wear- and corrosion-resistant layer that will also prevent cold welding of the moving parts in the helium atmosphere. Only a few nitriding furnaces exist that can house a forging as large as the CUD of the PBMR. Commercial nitriding furnaces in South Africa are all too small and have limited flexibility in terms of the nitriding process. The nitriding of a vessel as large as the CUD has not yet been carried out commercially. The aim of this work was to design and develop a custom-made nitriding plant to perform the nitriding of the first PBMR/HTF CUD. Proper process control is essential to ensure that the required nitrided case has been obtained. A new concept for a gas nitriding plant was developed using the nitrided vessel interior as the nitriding process chamber. Before the commencement of detail design, a laboratory test was performed on a scale model vessel to confirm concept feasibility. The design of the plant included the mechanical design of various components essential to the nitriding process. A special stirring fan with an extended length shaft was designed, taking whirling speed into account. Considerable research was performed on the high temperature use of the various components to ensure the safe operation of the plant at temperatures of up to 600°C. Nitriding requires the use of hazardous gases such as ammonia, oxygen and nitrogen. Hydrogen is produced as a by-product and therefore safety was the most important design parameter. Thermohydraulic analyses, i.e. heat transfer and pressure drop calculations in pipes, were also performed to ensure the successful process design of the nitriding plant. The nitriding plant was subsequently constructed and operated to verify the correct design. A large amount of experimental and operating data was captured during the actual operation of the plant. This data was analysed and the thermohydraulic analyses were verified. Nitrided specimens were subjected to hardness and layer thickness tests. The measured temperature of the protruding fan shaft was within the limits predicted by Finite Element Analysis (FEA) models. Graphs of gas flow rates and other operation data confirmed the inverse proportionality between ammonia supply flow rate and measured dissociation rate. The design and operation of the nitriding plant were successful as a nitride layer thickness of 400 μm and hardness of 1 200 Vickers hardness (VHN) was achieved. This research proves that a large pressure vessel can successfully be nitrided using the vessel interior as a process chamber. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
5

Digitální zprovoznění robotizovaného výrobního systému pro odporové navařování / Digital commissioning of a robotic production system for resistance welding

Šuba, Marek January 2021 (has links)
The subject of this diploma thesis is the simulation and digital commissioning of a robotic production system for welding elements such as studs on sheet metal parts. The basis of the work is search of information related to industrial robots, PLC control, tools used for welding, fixtures, manipulators, sensors, safety and protection elements commonly used in such production systems. The second part of the work deals with the given problem and it is a virtual commissioning of the given concept of a robotic production system. This means creating its simulation model in the Process Simulate environment, selecting robots, creating robotic trajectories, collision analysis, creating sensors, signals and optimization. Last part includes the connection of the simulation model with the software S-7PLCSIM Advanced and TIA Portal, the creation of control PLC logic in the form of a program, visualization and verification of their functionality using the above-mentioned connection with the simulation model.

Page generated in 0.06 seconds