Spelling suggestions: "subject:"metalorganic polyhedra"" "subject:"metalorganic polyhedral""
1 |
Design, Synthesis, and Characterization of Porous Metal-Organic MaterialsPark, Jinhee 03 October 2013 (has links)
Porous metal-organic materials (MOMs) are assembled through coordination between two types of building units, metal or metal-containing nodes and organic linkers. Metal-organic frameworks (MOFs) have 3-D infinite structures and are especially known for high porosity and enormous surface area, leading to diverse applications such as selective gas separation, gas storage and catalysis. In contrast, metal-organic polygons/polyhedra (MOPs) as discrete molecular coordination assemblies are soluble in certain solvents, allowing us to study their solution-chemistry.
In the first project, a microporous MOF with 1-dimensional (1D) bridging helical chain secondary building units (SBUs) shows facile transition from micro- to mesoporosity upon activation conditions. The quickly activated MOF shows permanent microporosity while the slow removal of coordinated aqua ligand results in formation of the mesopores in the microporous MOF.
Second, a strategy to introduce not only the functional groups but also functionalized meso-cavities into microporous MOFs through metal-ligand-fragment coassembly has been studied. With this functionalization, the interior of the MOFs can be tuned by a wide range of functional groups on the ligand fragments, including polar and ionic ones. Depending on the functional groups on the ligand fragments, the introduced cavities can be extended to mesopores in a controllable manner.
Third, a MOF constructed from dicopper paddlewheels and a predesigned ligand bearing carboxylate, pyridine, and amide groups enables selective adsorption of CO2 over CH4 and high H2 adsorption. The cooperative catalytic activity in a tandem one-pot deacetalization-Knoevenagel condensation was demonstrated.
In the fourth and fifth section, an optically and thermally switchable azobenzene was introduced into a MOF and MOPs, respectively. The freshly synthesized MOF adsorbed a significant amount of CO2. Upon light irradiation, the adsorbed gas molecules were squeezed out of the MOF due to the change of conformation of the azobenzene groups inside the pores. The adsorbent returned to its original state when allowed to stay with gentle heating. In addition, solubility of srMOPs was optically controlled by trans-cis isomerization of the azobenzene moieties. Interestingly, guest molecules were trapped during cis to trans isomerization and released in the trans to cis conversion. This srMOP can be applied to uses requiring stimuli responsive capture and release of guest molecules, such as in controlled drug delivery systems.
Finally, an organic linker with multiple conformations was used to synthesize both single and core-shell molecular squares, whose formations were controlled by reaction temperatures. Intriguingly the core-shell structure assembly was successfully employed as a template to prepare a heterobimetallic assembly, in which the metal substitution occurred exclusively in the core. This work might pave the way for the exploration of enzyme-mimicking molecular catalysts.
|
2 |
Chemistry and Applications of Metal-Organic MaterialsZhao, Dan 2010 December 1900 (has links)
Developing the synthetic control required for the intentional 3-D arrangement of
atoms remains a holy grail in crystal engineering and materials chemistry. The explosive
development of metal-organic materials in recent decades has shed light on the above
problem. Their properties can be tuned by varying the organic and/or inorganic building
units. In addition, their crystallinity makes it possible to determine their structures via
the X-ray diffraction method. This dissertation will focus on the chemistry and
applications of two kinds of metal-organic materials, namely, metal-organic frameworks
(MOFs) and metal-organic polyhedra (MOP).
MOFs are coordination polymers. Their permanent porosity makes them a good
“gas sponge”. In the first section, an isoreticular series of MOFs with dendritic hexacarboxylate
ligands has been synthesized and characterized structurally. One of the
MOFs in this series, PCN-68, has a Langmuir surface area as high as 6033 m2 g-1. The
MOFs also possess excellent gas (H2, CH4, and CO2) adsorption capacity.
In the second section, a NbO-type MOF, PCN-46, was constructed based on a
polyyne-coupled di-isophthalate linker formed in situ. Its lasting porosity was confirmed by N2 adsorption isotherm, and its H2, CH4 and CO2 adsorption capacity was examined
at 77 K and 298 K over a wide pressure range (0-110 bar).
Unlike MOFs, MOP are discrete porous coordination nanocages. In the third
section, a MOP covered with bulky triisopropylsilyl group was synthesized, which
exhibits a thermosensitive gate opening property. This material demonstrates a
molecular sieving effect at a certain temperature range, which could be used for gas
separation purpose.
In the last section, a MOP covered with alkyne group was synthesized through
kinetic control. The postsynthetic modification via click reaction with azide-terminated
polyethylene glycol turned them into metallomicelles, which showed controlled release
of an anticancer drug 5-fluorouracil.
In summary, two kinds of metal-organic materials have been discussed in this
dissertation, with the applications in gas storage, gas separation, and drug delivery.
These findings greatly enrich the chemistry and applications of metal-organic materials.
|
3 |
Studies on Porous Soft Materials Based on Linked Rhodium-Organic Cuboctahedra / ロジウム含有金属錯体立方八面体の集合体に基づく多孔性ソフトマテリアルに関する研究WANG, ZAOMING 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23926号 / 工博第5013号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 古川 修平, 教授 生越 友樹, 教授 浜地 格 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
4 |
Probing Molecules in Confined SpaceVetromile, Carissa Marie 01 January 2011 (has links)
Despite the plethora of information regarding cellular crowding and its importance on modulating protein function the effects of confinement on biological molecules are often overlooked when investigating their physiological function. Recently however, the encapsulation of biomolecules in solid state matrices (NafionTM, sol-gels, zirconium phosphate,etc.) has increased in importance as a method for examining protein conformation and dynamics in confined space as well as novel applications in biotechnology. Biotechnological applications include, but are not limited to, bioremediation, biosensors, biocatalysts, etc. In order to better utilize solid state materials as substrates for biological molecules an understanding of the effects of encapsulation on the detailed dynamics associated with physiological function is required as well as a complete characterization of the physical properties associated with the space in which the biological molecule is to be confined. The focus of this research is to probe the effects of confinement on the thermodynamics of ligand photo-release/rebinding to the prototypical heme protein, myoglobin, encapsulated within sol-gel glasses utilizing photoacoustic calorimetry (PAC) and photothermal beam deflection (PBD). Optical spectroscopies (including optical absorption and fluorescence) have also been employed to characterize the molecular environments of materials including Zr-phosphate and metal organic polyhedral (MOPs), thought to be good candidates for novel bio-hybrid materials. The assembly mechanisms associated with MOPs were also examined in order to develop a foundation through which new, bio-compatible MOPs can be designed. Overall the results presented here represent a technological breakthrough in the application of fast calorimetry to the study of proteins in confined space. This will allow for the first time the acquisition of detailed thermodynamic maps associated with the well-choreographed biomolecular dynamics in confined environments.
|
Page generated in 0.0414 seconds