• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SÃntese e anÃlise de catalisadores de ferro suportados em carbono ativado para sÃntese de Fischer-Tropsch / Synthesis and analysis of iron catalyst supported on activated carbon for Fischer-Tropsch synthesis

Marcia Gabriely Alves da Cruz 21 February 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho teve como objetivo sintetizar catalisadores metÃlicos de ferro suportados em carbono ativado a base de polÃmeros para sÃntese de Fischer-Tropsch. A preparaÃÃo dos catalisadores foi realizada pelo mÃtodo de impregnaÃÃo a umidade incipiente, utilizando soluÃÃo aquosa de nitrato de ferro nonahidratado para obtenÃÃo de amostras com, aproximadamente, 55% de ferro. Duas amostras foram preparadas (FeCP1 e FeCP2) e caracterizadas por fluorescÃncia de raios-X por energia dispersiva (EDXRF), difraÃÃo de raios-X (DRX), medidas de fisissorÃÃo de nitrogÃnio, espectroscopia fotoeletrÃnica de raio-X (XPS), microscopia eletrÃnica de varredura (SEM-EDS) e reduÃÃo à temperatura programada (TPR). As amostras foram submetidas tambÃm a testes catalÃticos, utilizando-se diferentes condiÃÃes de temperatura (513, 528 e 543 K), pressÃo (20, 25 e 30 atm) e razÃo molar H2:CO de 1 e 0,5. Os dados de EDXRF evidenciaram considerÃvel diferenÃa no teor de metal impregnado entre os dois catalisadores; o FeCP2 apresentou teor prÃximo ao esperado enquanto o catalisador FeCP1 ficou aquÃm do desejado. Os difratogramas obtidos por DRX mostraram um maior grau de cristalinidade da amostra FeCP2, enquanto FeCP1 e os dois suportes (CP1 e CP2) apresentaram-se como semi-cristalinos. Para o catalisador FeCP2, apresentaram-se duas fases ativas presentes, α-Fe2O3 e γ-Fe2O3; jà no FeCP1, hà apenas α-Fe2O3. A anÃlise das caracterÃsticas texturais revelou que, apÃs a introduÃÃo metÃlica no suporte, houve decrÃscimo nos valores de Ãrea especÃfica, volume de poros e diÃmetro de poros, sendo mais perceptÃvel para o catalisador FeCP2. As curvas de XPS expuseram os grupos funcionais oxigenados presentes na superfÃcie dos suportes, bem como a presenÃa do Fe+3 como fase ativa predominante em ambos os catalisadores. O espectro de ambos os catalisadores apresentou tambÃm um pico satÃlite que sugere a presenÃa de um outro estado de valÃncia do ferro semelhante ao que se tem no carbeto de ferro. As imagens obtidas por SEM exibiram forma e superfÃcie irregulares, sendo as partÃculas presentes no FeCP2 maiores que a do FeCP1 devido a sua cristalinidade. Os dados de EDS demonstraram que, aproximadamente, metade do percentual de ferro presente no catalisador encontra-se na superfÃcie. Pode-se inferir tambÃm por essa anÃlise, utilizando-se seu espectro, a presenÃa de carbeto de ferro na superfÃcie do catalisador. As curvas de TPR evidenciaram uma maior estabilidade do catalisador FeCP2 mediante o FeCP1, por este ter apresentado trÃs etapas de reduÃÃo do Ãxido de ferro e nÃo duas, como apresentada para aquele Ãltimo. O teste catalÃtico expÃs a melhor eficiÃncia do catalisador FeCP2 para a produÃÃo de hidrocarbonetos na faixa de C5-C9, para as mesmas condiÃÃes de temperatura, pressÃo e razÃo molar. Entretanto, a diminuiÃÃo da razÃo molar desfavoreceu a obtenÃÃo de hidrocarbonetos pesados. / The aim of this work was to synthesize iron catalysts supported on polymer-based activated carbons, for the Fischer-Tropsch synthesis. The preparation of the catalysts was performed by incipient wetness impregnation method using an aqueous solution of iron nitrate nonahydrate to obtain samples with approximately 55 % of iron. Two samples were prepared (FeCP1 and FECP2) and characterized by energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), nitrogen adsorption measurements, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS) and temperature-programmed reduction (TPR). The samples were also submitted to catalytic tests using different conditions of temperature (513, 528 and 543 K), pressure (20, 25 and 30 atm), and H2:CO molar ratio of 1 and 0.5. EDXRF data showed considerable difference in content of impregnated metal for both catalysts. FeCP2 exhibited an iron load close to the value expected while FeCP1 presented an iron load significantly lower than expected. XRD patterns showed a higher degree of crystallinity of the sample FeCP2, whereas FeCP1 and both supports used (CP1 and CP2) were found to be semi-crystalline. FeCP2 catalyst presented two active phases, α-Fe2O3 and γ-Fe2O3, while FeCP1 showed only one phase, α-Fe2O3. The analysis of the textural characteristics revealed a decrease in the values of the specific area, pore volume and pore diameter after the introduction of the metal into the support, which was more noticeable with the FeCP2 catalyst. XPS patterns indicated oxygen functional groups on the support surface and the presence of Fe+3 as the predominant active phase on both catalysts. The spectrum of both catalysts also showed a satellite peak which shows the presence of another valence state similar to the iron carbide. Images obtained by SEM revealed irregular shape and surface, being the particles present in FeCP2 greater than those on FeCP1 due to the crystallinity of the former. EDS data showed that approximately half of the iron percentage present in the catalyst bulk is on the surface. The presence of iron carbide on the catalyst surface can be inferred by using this spectrum analysis too. TPR graphics demonstrated a higher stability of the FeCP2, due to the three-step reduction of iron oxide instead of two as shown for the FeCP1. According to the results of the catalytic tests FeCP2 exhibited a better efficiency for the production of hydrocarbons in the C5-C9 range, for the same conditions of temperature, pressure and molar ratio. However, the decrease in the molar ratio disfavors the production of heavy hydrocarbons.
2

Contribution à l'étude de la stabilité des minéraux constitutifs de l'argilité du Callovo-Oxfordien en présence de fer à 90° C / Contribution in the study of the stability of Callvo-Oxfordian clay rock minerals in the presence of iron at 90° C

Rivard, Camille 15 November 2011 (has links)
Dans le contexte de stockage des déchets radioactifs en profondeur, des interactions entre le fer métal d’une part et la roche du Callovo-Oxfordien (COx), sa fraction argileuse purifiée (SCOx) ou des phases argileuses pures (kaolinite, illite, smectites) d’autre part, sont réalisées à 90°C sous atmosphère anoxique en solution chlorurée-salée. Le rôle des minéraux non argileux du COx est également étudié. L'oxydation rapide du fer métal entraine une libération d’ions fer en solution, une augmentation du pH et une diminution du Eh (réducteur). Une dissolution partielle des phases argileuses ainsi que la précipitation de serpentines ferrifères (odinite ou berthiérine, principalement) et de magnétite en faible quantité sont alors observées. En cas d’apport d'O2 au système, les serpentines ferrifères sont déstabilisées. L'exsolution du fer permet la formation d'oxydes et d’hydroxydes de fer et des particules argileuses proches des phases initiales précipitent. Lorsque du quartz est ajouté à SCOx, la dissolution partielle de ce minéral est responsable de la modification des chemins réactionnels. La formation de magnétite est alors limitée et les serpentines ferrifères sont enrichies en silice. Dans le cas de la kaolinite, DRX, MET, XPS et analyses texturales mettent en évidence la croissance des serpentines ferrifères (berthierines majoritairement) sur la surface basale des kaolinites, formant des particules kaolinite-serpentines-Fe démixées. Les techniques spectroscopiques (Mössbauer, XAS et STXM) permettent de déterminer les rapports Fe2+/Fe3+ et AlIV/AlVI jusqu'au niveau des particules élémentaires et de proposer des formules structurales pour ces serpentines ferrifères / In the context of underground disposal of high-level radioactive waste, interactions between metallic iron and Callovo-Oxfordian rock (COx), its purified clay fraction (SCOx) or pure clay phases (kaolinite, illite, smectites) were investigated at 90°C under anoxic atmosphere in chlorine solution. Role of COx non clay minerals in these reactions was also studied. Rapid metallic iron oxidation conducts to iron cations release in solution, pH increase (8-10) and Eh decrease (reducive conditions). The partial dissolution of initial clay phases and the crystallization of Fe-serpentines (odinite or berthierine mainly) and of low amount of magnetite were observed. The introduction of O2 into the system leads to Fe-serpentines destabilisation. Iron exsolution conducts to iron oxides and hydroxides formation and clay particles with composition close to the initial ones precipitate. Addition of quartz into the system leads to the partial dissolution of this mineral and to the modification of reaction pathways. Precipitation of magnetite is reduiced and Fe-serpentines are silica enriched. In the case of kaolinite-metallic iron interaction, combinated used of XRD, MET, XPS and textural analyses evidences the growth of berthierine on the basal face of kaolinites, resulting in Fe-serpentine-kaolinite demixed particles. Through the used of spectroscopic analyses (Mössbauer, XAS and STXM), we were able to determine Fe2+/Fe3+ and AlIV/AlVI ratio in elementary particles, which allows proposing structural formulae for the Fe-serpentines
3

Understanding sorption mechanisms of uranium onto elemental iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic

N’zau Umba-di-Mbudi, Clement 19 March 2010 (has links) (PDF)
The concomitant occurrence and reported discrepant behavior of uranium and arsenic in water bodies is a major health and environmental concern. This study combined batch and column experiments, hydrogeochemical simulations and XAFS spectroscopy to uncover the exchange mechanisms governing uranium fate between water and scrap metallic iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic. The main results suggest that both water chemistry and the solid phase composition influence uranium fate in the presence of arsenic. The importance of uranyl-arsenate species as a major control of uranium behavior in the presence of arsenic is shown. The toxicity of arsenic and the presence of nitrate are interpreted as limiting factors of the enzymatic reduction of both toxins. Besides, XANES fingerprinting and EXAFS modeling have confirmed precipitation/co-precipitation of uranyl-arsenates as a major mechanism controlling uranium behavior in the presence of arsenic.
4

Understanding sorption mechanisms of uranium onto elemental iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic

N’zau Umba-di-Mbudi, Clement 11 December 2009 (has links)
The concomitant occurrence and reported discrepant behavior of uranium and arsenic in water bodies is a major health and environmental concern. This study combined batch and column experiments, hydrogeochemical simulations and XAFS spectroscopy to uncover the exchange mechanisms governing uranium fate between water and scrap metallic iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic. The main results suggest that both water chemistry and the solid phase composition influence uranium fate in the presence of arsenic. The importance of uranyl-arsenate species as a major control of uranium behavior in the presence of arsenic is shown. The toxicity of arsenic and the presence of nitrate are interpreted as limiting factors of the enzymatic reduction of both toxins. Besides, XANES fingerprinting and EXAFS modeling have confirmed precipitation/co-precipitation of uranyl-arsenates as a major mechanism controlling uranium behavior in the presence of arsenic.

Page generated in 0.0774 seconds