• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Set of Spectroscopic Metallicity Calibrations for RR Lyrae Variable Stars

Spalding, Eckhart 01 January 2014 (has links)
RR Lyrae stars are old, iron-poor, Helium-burning variable stars. RR Lyraes are extremely useful for tracing phase-space structures and metallicities within the galaxy because they are easy to identify, have consistent luminosities, and are found in large numbers in the galactic disk, bulge, and halo. Here we present a new set of spectroscopic metallicity calibrations that use the equivalent widths of the Ca II K, Hγ, and Hδ lines to calculate metallicity values. Applied to spectroscopic survey data, these calibrations will help shed light on the evolution of the Milky Way and other galaxies.
2

Characterizing AGN Influence on the Calculated Metallicities of Adjacent Star-Forming Spaxels

Khelil, Aidan 08 November 2022 (has links)
No description available.
3

RR LYRAE CALIBRATION USING SDSS, SINGLE-EPOCH SPECTROSCOPY

Long, Stacy 01 January 2018 (has links)
I use single-epoch, SDSS spectroscopy of RR Lyraes identified in the Catalina survey to separate the spectra into same-temperature groups. Then I draw temperature-phase diagrams of the groups. I find shocked stars, improperly phased stars, low amplitude stars, and a few that are more likely eclipsing binaries. The RR Lyraes are then given precise metallicities by measurements of the CaII K and H-β, H-γ, and H-δ lines. This leads to better distance measurements, which allow me to confirm a distinction between the inner and outer galactic halo.

Page generated in 0.1132 seconds