• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solvent Refining of Metallurgical Grade Silicon Using Iron

Shaghayegh, Esfahani 31 December 2010 (has links)
Purification of metallurgical grade silicon (MG- Si) by a combination of solvent refining and physical separation has been studied. MG-Si was alloyed with iron and solidified under different cooling rates to grow pure Si dendrites from the alloy. The Si dendrites and FeSi2 that were formed after solidification were then separated by a gravity-based method. The separation method relies on significantly different densities of Si and FeSi2, and uses a heavy liquid with specific gravity between the two phases to float the former on the surface of a heavy liquid, while the latter sinks to the bottom. The effect of particle size and cooling rate on the Si yield and separation efficiency of the Si phase was investigated. The floated Si particles were further purified by removing the physically adherent Fe-Si phase, using an acid leaching method. Analysis of the produced silicon indicates that several impurity elements including P and B can be efficiently removed using this simple and low-cost technique.
2

Solvent Refining of Metallurgical Grade Silicon Using Iron

Shaghayegh, Esfahani 31 December 2010 (has links)
Purification of metallurgical grade silicon (MG- Si) by a combination of solvent refining and physical separation has been studied. MG-Si was alloyed with iron and solidified under different cooling rates to grow pure Si dendrites from the alloy. The Si dendrites and FeSi2 that were formed after solidification were then separated by a gravity-based method. The separation method relies on significantly different densities of Si and FeSi2, and uses a heavy liquid with specific gravity between the two phases to float the former on the surface of a heavy liquid, while the latter sinks to the bottom. The effect of particle size and cooling rate on the Si yield and separation efficiency of the Si phase was investigated. The floated Si particles were further purified by removing the physically adherent Fe-Si phase, using an acid leaching method. Analysis of the produced silicon indicates that several impurity elements including P and B can be efficiently removed using this simple and low-cost technique.
3

Refining Metallurgical Grade Silicon by Chlorination Treatment with Emphasis on Aluminum Removal

Bolandi, Mahboob 04 1900 (has links)
<p>A supply shortage of solar-grade silicon in recent years resulted from a rapid expansion of the solar cell industry. Therefore, many efforts have been done to obtain reliable metallurgical methods for production of SoG silicon from metallurgical grade silicon.</p> <p>In this research, refining of metallurgical grade silicon by chlorination treatment with the emphasis on Al removal was investigated. Thermodynamic calculations through Factsage confirmed the feasibility of Al removal in repeated steps of chlorination. Therefore, an Ar+SiCl<sub>4</sub> gas mixture with different flow rates was applied to the silicon melt by blowing and injection methods at different temperatures and the ICP-OES was used for analysis of the impurities in silicon.</p> <p>Results revealed that Al removal from silicon by chlorination treatment under the conditions employed in this study is first order reaction with respect to Al. By increasing the temperature in the chlorination process, the rate constant increases which is related to an increase in the liquid mass transfer rate. Also the observed higher rates of Al removal under injection conditions appear to be the result of improved stirring in the melt rather than an increase in the interfacial area.</p> / Master of Applied Science (MASc)
4

Silicon-based nanomaterials obtained by electrochemical etching of metallurgical substrates / Nanomatériaux à base de silicium obtenus par gravure électrochimique de substrats métallurgiques

Pastushenko, Anton 19 May 2016 (has links)
Le Silicium est le deuxième élément le plus abondant dans la croûte terrestre après l’oxygène. Il est produit par voie métallurgique dans un four à arc électrique, le quartz est réduit en présence de réducteurs (charbon de bois, houille et coke de pétrole). Le silicium métallurgique est principalement utilisé dans la métallurgie comme élément d’alliage, dans la chimie et l’industrie solaire. Le prix du Silicium est fonction de sa pureté. Les travaux de cette thèse se divisent en deux parties l’utilisation du Silicium Métallurgique (99% Si) pour le stockage de l’hydrogène, et la photoluminescence du ferrosilicium (disiliciure de fer) de qualité métallurgique. Des substrats de silicium métallurgique ont été soumis à une anodisation électrochimique dans une solution à base d’acide fluorhydrique. Le silicium poreux nanostructuré obtenu est légèrement différent du silicium poreux issu de substrat de silicium de qualité électronique de même résistivité. L’influence des principaux paramètres sur la génération de l’hydrogène : la porosité, la concentration, le volume et la température ont fait l’objet d’une étude détaillée. Le silicium poreux produit à partir de silicium métallurgique est un matériau de stockage d’hydrogène. Des substrats de disiliciure de fer de qualité métallurgique ont été soumis à une anodisation électrochimique. Le composé obtenu est du disiliciure de fer nanostructuré avec du silicium résiduel, ce produit est recouvert de fluorosilicate de fer hexahydraté qui a la particularité d’être luminescent. Il s’agit à ce jour de la première anodisation du disiliciure de fer, un mécanisme de gravure a été proposé et l’influence des principaux paramètres d’anodisation sur les propriétés de photoluminescence a été évaluée. / Silicon is the second most abundant element in the Earth crust after oxygen. Its use in metallurgy, building and electronic industry requires a huge fabrication level. Depending on the contamination level allowed, the price of this material varies in the orders of magnitude. This thesis focuses on the use of dirtiest metallurgical grade silicon and iron disilicide substrates for hydrogen storage and photoluminescence applications. The initial substrates were subjected to electrochemical etching in hydrofluoric acid-containing solutions. Anodization of metallurgical grade silicon substrate produces nanostructured porous silicon with somewhat shifted parameters (comparing with electronic grade porous silicon with the same resistivity), as it was studied in this thesis in details. It was shown, that metallurgical grade porous silicon can be applied as hydrogen storage material. Hydrogen generation is studied here based on the influences of some technically critical parameters: porosity, alkali concentration, volume and temperature. Electrochemical treatment of metallurgical grade iron disilicide substrates produces luminescent iron fluorosilicate hexahydrate, covering the residual nanostructured iron disilicide/silicon. Here, the influence of anodization parameters on photoluminescent properties is studied. Also, etching mechanism is proposed as for the new material never anodized.

Page generated in 0.1159 seconds