Spelling suggestions: "subject:"detals inn medicine."" "subject:"detals iin medicine.""
11 |
Pyrazole and pyrazolyl palladium(II) and platinum(II) complexes: synthesis and in vitro evaluation as anticancer agents.Keter, Frankline Kiplangat January 2004 (has links)
The use of metallo-pharmaceuticals, such as the platinum drugs, for cancer treatment illustrates the utility of metal complexes as therapeutic agents. Platinum group metal complexes therefore offer potential as anti-tumour agents to fight cancer. This study was aimed at synthesizing and evaluating the effects of palladium(II) and platinum(II) complexes as anticancer agents.
|
12 |
Pyrazole and pyrazolyl palladium(II) and platinum(II) complexes: synthesis and in vitro evaluation as anticancer agents.Keter, Frankline Kiplangat January 2004 (has links)
The use of metallo-pharmaceuticals, such as the platinum drugs, for cancer treatment illustrates the utility of metal complexes as therapeutic agents. Platinum group metal complexes therefore offer potential as anti-tumour agents to fight cancer. This study was aimed at synthesizing and evaluating the effects of palladium(II) and platinum(II) complexes as anticancer agents.
|
13 |
Synthesis and self-assembly of novel lipid platinum complexesCruz Sanchez, Fabiola A., January 2007 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2007. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
14 |
The chemical and mechanical effects of binding chitosan to implant quality titaniumMartin, Holly Joy, January 2006 (has links)
Thesis (Ph.D.) -- Mississippi State University. Dave C. Swalm School of Chemical Engineering. / Title from title screen. Includes bibliographical references.
|
15 |
Pyrazole and pyrazolyl palladium(II) and platinum(II) complexes: synthesis and in vitro evaluation as anticancer agentsKeter, Frankline Kiplangat January 2004 (has links)
Magister Scientiae - MSc / The use of metallo-pharmaceuticals, such as the platinum drugs, for cancer treatment illustrates the utility of metal complexes as therapeutic agents. Platinum group metal complexes therefore offer potential as anti-tumour agents to fight cancer. This study was aimed at synthesizing and evaluating the effects of palladium(II) and platinum(II) complexes as anticancer agents. / South Africa
|
16 |
The role of nanostructural and electrical surface properties on the osteogenic potential of titanium implantsGittens Ibacache, Rolando Arturo 23 August 2012 (has links)
Dental and orthopaedic implants are currently the solutions of choice for teeth and joint replacements with success rates continually improving, but they still have undesirable failure rates in patients who are compromised by disease or age, and who in many cases are the ones most in need. The success of titanium (Ti) implants depends on their ability to osseointegrate with the surrounding bone and this, in turn, is greatly dependent on the surface characteristics of the device. Advancements in surface analysis and surface modification techniques have improved the biological performance of metallic implants by mimicking the hierarchical structure of bone associated with regular bone remodeling. In this process, damaged bone is resorbed by osteoclasts, which produce resorption lacunae containing high microroughness generated after mineral dissolution under the ruffled border, as well as superimposed nanoscale features created by the collagen fibers left at the surface. Indeed, increasing Ti surface roughness at the micro and sub-microscale level has been shown to increase osteoblast differentiation in vitro, increase bone-to-implant contact in vivo, and accelerate healing times clinically. Recently, the clinical application of surface nanomodification of implants has been evaluated. Still, most clinically-available devices remain smooth at the nanoscale and fundamental questions remain to be elucidated about the effect of nanoroughness on the initial response of osteoblast lineage cells.
Another property that could be used to control osteoblast development and the process of osseointegration is the electrical surface charge of implants. The presence of endogenous electrical signals in bone has been implicated in the processes of bone remodeling and repair. The existence of these native signals has prompted the use of external electrical stimulation to enhance bone growth in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports confirming its beneficial effects on bone formation. However, the use of electrical stimulation on Ti implants to enhance osseointegration is less understood, in part because of the lack of in vitro models that truly represent the in vivo environment. In addition, an aspect that has not been thoroughly examined is the electrical implication of implant corrosion and its effect on the surrounding tissue. Implants are exposed to extreme conditions in the body such as high pH during inflammation, and cyclic loads. These circumstances may lead to corrosion events that generate large electrochemical currents and potentials, and may cause abnormal cell and tissue responses that could be partly responsible for complications such as aseptic loosening of implants.
Consequently, Ti implants with tailored surface characteristics such as nanotopography and electrical polarization, could promote bone healing and osseointegration to ensure successful outcomes for patients by mimicking the biological environment of bone without the use of systemic drugs. The objective of this thesis is to understand how surface nanostructural and electrical characteristics of Ti and Ti alloy surfaces may affect osteoblast lineage cell response in vitro for normal tissue regeneration and repair. Our central hypothesis is that combined micro/nanostructured surfaces, as well as direct stimulation of Ti surfaces with fixed direct current (DC) potentials, can enhance osteoblast differentiation.
|
17 |
FePt magnetic nanoparticles : syntheses, functionalisation and characterisation for biomedical applicationsChen, Shu January 2011 (has links)
Iron platinum (FePt) has attracted growing interest because of its high Curie temperature, magneto-crystalline anisotropy and chemical stability. Nanoparticles (NPs) made of this alloy are promising candidates for a wide range of biomedical applications including magnetic separation, magnetic targeted drug delivery, hyperthermia for cancer therapy and also as magnetic resonance imaging (MRI) contrast agents. This thesis presents the synthesis, functionalization and characterization of FePt NPs along with a toxicity study and an investigation into their application as MRI contrast agents. Regarding their synthesis, different approaches have been explored including the co-reduction of Fe and Pt precursors in an aqueous media, the thermal decomposition in a conventional high-boiling solvent such as benzyl ether, and in low-melting organic salts (ionic liquids). The data revealed an inhomogeneous composition distribution of Fe and Pt between particles obtained in aqueous media, due to the iron salts hydrolysis, and a mismatch in the co-reduction kinetic of the two metal precursors. While the iron content in the NPs could be increased by using more hydrolytically stable iron precursors or stronger reducing agents, there are remaining limiting parameters which prevent further Fe content increase in NPs. In contrast, by excluding the water from the reaction system and using a Fe²⁻ iron precursor, homogenous 1:1 Fe to Pt ratio NPs can be obtained through a modified thermal decomposition pathway in benzyl ether. Based on the study of synthesis in this conventional chemical, the potential of ionic liquids (ILs) to be used as novel solvents for FePt NPs synthesis was further explored. It was then demonstrated that ionic liquids (ILs) can not only be used as a solvent for synthesis of FePt NPs, but also can provide an exciting alternative pathway to direct synthesis fct-FePt NPs. In the context of the bioapplication of FePt NPs, a family of FePt NPs was specifically designed to enhance their MRI contrast agents properties. In contrast with previous reports, this thesis demonstrates that FePt NPs can be made non-toxic and provides the first data on their cellular uptake mechanisms. A six times increase in the FePt based T₂ contrast properties compared to clinical iron oxide NPs is reported. The relationship between the MRI contrast properties and the NPs architecture is explored and rationalised as the basis for the design of NPs as enhanced MRI contrast agents. Finally, the first observations of cellular and in vivo MR imaging with FePt NPs is also reported. This study opens the way for several applications of FePt NPs such as regenerative medicine and stem cell therapy, thus providing a bio-platform to develop novel diagnostic and therapeutic agents.
|
Page generated in 0.0957 seconds