• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • Tagged with
  • 20
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microbial Growth on Pall-rings : A problem when upgrading biogas with the technique water absorption

Tynell, Åsa January 2005 (has links)
<p>Upgradering av biogas med tekniken vattenabsorption är vanligt i Sverige. Elva biogasanläggningar med tillsammans fjorton uppgraderingsanläggningar använder sig av tekniken. Problem med igensättning av fyllkroppar i absorptionskolonnen, samt i ett fall i desorptionskolonnen är vanligt förekommande och har en negativ effekt på uppgraderingen av rågas till fordonsgas. Fem av de nio anläggningarna i denna studie har problem med mikrobiell tillväxt på fyllkropparna. Syftet med denna rapport var att identifiera den mikrobiella tillväxten och avgöra vilka faktorer som reglerar den för att kunna rådge driftsansvariga hur man motverkar tillväxt.</p><p>En enkät skickades ut och studiebesök gjordes för att samla information om anläggningarna. Fosfolipidfettsyra (PLFA)-analyser utfördes för att bestämma mikrobiell biomassa och de organismer, som kan indikeras av de PLFA som är s.k. biomarkörer.</p><p>Prover samlades in från fyra uppgraderingsanläggningar: Jönköping, Kristianstad, Linköping och Uppsala. Proverna som samlades in var till utseendet olika, allt från gult slem från Linköping till röd-brun gegga som liknade kaffe-sump från Uppsala. I proverna från Linköping och Uppsala detekterades biomarkörer för metanoxiderande bakterier (metanotrofer) av typ I. Metanotrofer finns i jord, vatten och luft i miljöer med tillgång till metan och syre. I Jönköpingsproverna detekterades biomarkörer actinomyceter som är en vanligt förekommande bakterie i avloppsreningsverkens luftningsbassänger. Den mikrobiella tillväxten som samlades in från Kristianstad räckte enbart till ett prov och därför är det resultatet ej tillförlitligt.</p><p>I samtliga prover detekterades svamp (fungi) som förmodligen etablerats efter andra organismer.</p><p>Faktorer som kan anses påverka den mikrobiella tillväxten är processvattnets kvalitet, pH och temperatur. Rent vatten (dricksvatten) innehåller mindre mängd organiskt material, samtliga anläggningar som använder sig av avloppsvatten upplever problem. Lågt pH är gynnsamt för att minska den mikrobiella tillväxten eftersom de flesta organismer trivs bäst vid neutralt pH. Låg temperatur är gynnsam eftersom lösligheten för koldioxid och divätesulfid är större vid lägre temperaturer, vilket gynnar uppgraderingen av biogas.</p> / <p>Upgrading of biogas performed using the technique absorption with water wash is common in Sweden where eleven biogas plants, comprising a total of fourteen upgrading plants use this technique. However problems with microbial growth on the pall-rings in the absorption column, and in one case in the desorption column, have negative impact on upgrading the raw gas to vehicle gas. Five of the nine biogas plants studied here have experienced problems with microbial growth. The objective of this report was to identify the microbial growth and determine possible factors regulating microbial growth in order to give advice to process management.</p><p>A questionnaire was sent out and visits were made to the upgrading plants to collect information about the plants. A phospholipid fatty acid (PLFA) analysis was performed to determine microbial biomass and community structure, for which PLFA biomarkers are one type of indicator.</p><p>Samples were analysed from four upgrading plants: Jönköping, Kristinstad, Linköping and Uppsala. The cultures collected were visually different, varying from yellow and slimy to reddish brown with the consistency of coffee grounds. In the Linköping and Uppsala samples, biomarkers for methane-oxidising bacteria (type I methanotrophs) were detected. Methanotrophs live in environments with access to methane and oxygen and are inhibited by e.g. acetylene. In the Jönköping samples biomarkers indicating the bacteria actinomycetes common in the water of aeration tanks in sewage treatment plants, were detected. In Kristianstad there was only enough culture for one sample, so no reliable result was obtained. Fungi were detected in all samples and probably established after other organisms.</p><p>Factors affecting development of microbial growth were found to be water quality, pH and temperature of the process water. Clean water (drinking water) contains less organic material than cleaned water from sewage treatment plants. All plants using water from sewage treatment plants have experienced microbial growth. Low pH is beneficial for reducing microbial growth since most organisms prefer a neutral environment.</p><p>Low temperature is beneficial for minimising microbial growth since the solubility of carbon dioxide and hydrogen sulphide increases with decreasing temperature.</p>
12

Microbial Growth on Pall-rings : A problem when upgrading biogas with the technique water absorption

Tynell, Åsa January 2005 (has links)
Upgradering av biogas med tekniken vattenabsorption är vanligt i Sverige. Elva biogasanläggningar med tillsammans fjorton uppgraderingsanläggningar använder sig av tekniken. Problem med igensättning av fyllkroppar i absorptionskolonnen, samt i ett fall i desorptionskolonnen är vanligt förekommande och har en negativ effekt på uppgraderingen av rågas till fordonsgas. Fem av de nio anläggningarna i denna studie har problem med mikrobiell tillväxt på fyllkropparna. Syftet med denna rapport var att identifiera den mikrobiella tillväxten och avgöra vilka faktorer som reglerar den för att kunna rådge driftsansvariga hur man motverkar tillväxt. En enkät skickades ut och studiebesök gjordes för att samla information om anläggningarna. Fosfolipidfettsyra (PLFA)-analyser utfördes för att bestämma mikrobiell biomassa och de organismer, som kan indikeras av de PLFA som är s.k. biomarkörer. Prover samlades in från fyra uppgraderingsanläggningar: Jönköping, Kristianstad, Linköping och Uppsala. Proverna som samlades in var till utseendet olika, allt från gult slem från Linköping till röd-brun gegga som liknade kaffe-sump från Uppsala. I proverna från Linköping och Uppsala detekterades biomarkörer för metanoxiderande bakterier (metanotrofer) av typ I. Metanotrofer finns i jord, vatten och luft i miljöer med tillgång till metan och syre. I Jönköpingsproverna detekterades biomarkörer actinomyceter som är en vanligt förekommande bakterie i avloppsreningsverkens luftningsbassänger. Den mikrobiella tillväxten som samlades in från Kristianstad räckte enbart till ett prov och därför är det resultatet ej tillförlitligt. I samtliga prover detekterades svamp (fungi) som förmodligen etablerats efter andra organismer. Faktorer som kan anses påverka den mikrobiella tillväxten är processvattnets kvalitet, pH och temperatur. Rent vatten (dricksvatten) innehåller mindre mängd organiskt material, samtliga anläggningar som använder sig av avloppsvatten upplever problem. Lågt pH är gynnsamt för att minska den mikrobiella tillväxten eftersom de flesta organismer trivs bäst vid neutralt pH. Låg temperatur är gynnsam eftersom lösligheten för koldioxid och divätesulfid är större vid lägre temperaturer, vilket gynnar uppgraderingen av biogas. / Upgrading of biogas performed using the technique absorption with water wash is common in Sweden where eleven biogas plants, comprising a total of fourteen upgrading plants use this technique. However problems with microbial growth on the pall-rings in the absorption column, and in one case in the desorption column, have negative impact on upgrading the raw gas to vehicle gas. Five of the nine biogas plants studied here have experienced problems with microbial growth. The objective of this report was to identify the microbial growth and determine possible factors regulating microbial growth in order to give advice to process management. A questionnaire was sent out and visits were made to the upgrading plants to collect information about the plants. A phospholipid fatty acid (PLFA) analysis was performed to determine microbial biomass and community structure, for which PLFA biomarkers are one type of indicator. Samples were analysed from four upgrading plants: Jönköping, Kristinstad, Linköping and Uppsala. The cultures collected were visually different, varying from yellow and slimy to reddish brown with the consistency of coffee grounds. In the Linköping and Uppsala samples, biomarkers for methane-oxidising bacteria (type I methanotrophs) were detected. Methanotrophs live in environments with access to methane and oxygen and are inhibited by e.g. acetylene. In the Jönköping samples biomarkers indicating the bacteria actinomycetes common in the water of aeration tanks in sewage treatment plants, were detected. In Kristianstad there was only enough culture for one sample, so no reliable result was obtained. Fungi were detected in all samples and probably established after other organisms. Factors affecting development of microbial growth were found to be water quality, pH and temperature of the process water. Clean water (drinking water) contains less organic material than cleaned water from sewage treatment plants. All plants using water from sewage treatment plants have experienced microbial growth. Low pH is beneficial for reducing microbial growth since most organisms prefer a neutral environment. Low temperature is beneficial for minimising microbial growth since the solubility of carbon dioxide and hydrogen sulphide increases with decreasing temperature.
13

Comunidades bacterianas e metanotróficas da Terra Preta da Amazônia sob atmosfera enriquecida com metano / Bacterial and methanotrophic communities of Amazonian Dark Earth under methane enriched atmosphere

Marília Hauck Reichert 20 March 2015 (has links)
Os microrganismos são responsáveis por diversos processos biológicos essenciais ao ambiente, sendo estes intimamente relacionados com as taxas de decomposição da matéria orgânica e com a persistência da fertilidade nos solos. Apesar da importância e grande diversidade, a identificação de táxons envolvidos em processos específicos está geralmente restrita a uma pequena fração da microbiota que pode ser isolada e cultivada. Sendo assim, pouco se sabe sobre os microrganismos que atuam no ciclo do carbono no solo, como, aqueles que participam da oxidação do metano (CH4), por exemplo. Estes, chamados metanotróficos exercem papel importante no controle da emissão desse gás de efeito estufa para a atmosfera podendo servir como um filtro de metano e mitigar suas emissões. A Terra Preta Antropogênica (TPA) é um importante ecossistema na região amazônica e contém fragmentos cerâmicos e frações orgânicas, como o carvão (biocarvão), que foram incorporados em períodos pré-colombianos. Isso resultou em solos sustentáveis com elevada fertilidade, apresentando cerca de três vezes mais matéria orgânica, setenta vezes mais biocarvão e diversidade microbiana maior quando comparados com os solos adjacentes. Com o presente trabalho, objetivou-se avaliar o efeito do enriquecimento atmosférico com metano sobre a abundância da comunidade bacteriana total e de metanotróficas nos solos de Terra Preta da Amazônia sob floresta e cultivo (TPA Floresta e TPA Cultivada) e seus respectivos solos adjacentes (ADJ Floresta e ADJ Cultivado), coletados Estação Experimental do Caldeirão (Iranduba, AM). Para tanto, foi realizado um experimento de microcosmo no qual os solos foram incubados com atmosfera contendo 10% de metano e meio de cultura NMS (do inglês, Nitrate mineral salts), utilizado para crescimento de metanotróficas, a fim de avaliar a resposta dessas comunidades ao longo de 21 dias. A variação da concentração de metano na atmosfera dos frascos foi monitorada através de cromatografia gasosa e o DNA do solo recuperado nos tempos de coleta durante o experimento foi extraído para utilização na técnica de PCR quantitativo (qPCR), a qual possibilitou a quantificar o número de cópias dos genes 16S rRNA Bacteria e pmoA nas amostras. O solo de Terra Preta da Amazônia se mostrou um potencial dreno de CH4 atmosférico Comparando as respostas dos solos com floresta (TPA Floresta e ADJ Floresta) e cultivados (TPA Cultivada e ADJ Cultivado), notou-se uma menor variação da abundância da comunidade metanotrófica presente nestes últimos, o que indica que alteração do uso do solo afeta a capacidade do mesmo em retirar metano da atmosfera. Os solos Adjacentes apresentaram resposta diferente dos solos de TPA, indicando que a história de formação, ocupação e uso do solo também influenciam na capacidade do solo em drenar o metano da atmosfera. / Microorganisms are responsible for several biological processes essential to the environment, which are closely related to the rates of decomposition of organic matter and with the persistence of fertility in soils. Despite the importance and high diversity, identification of taxa involved in specific processes is usually restricted to a small fraction of the microbiota that can be isolated and cultivated. Thus, little is known about the microorganisms that act on the carbon cycle in the soil, such as those participating in the oxidation of methane (CH4), for example. These, known as methanotrophs play an important role in controlling the emission of greenhouse gas into the atmosphere and may serve as a methane filter and mitigate their emissions. Amazonian Dark Earth (ADE) is an important ecosystem in the Amazonian region and contains ceramic fragments and organic amendments, such as charcoal (biochar), which were incorporated in Pre-Columbian periods. This resulted in sustainable soils with high fertility, presenting about three times more organic matter, seventy times more biochar and higher microbial diversity when compared to adjacent soils. The present work aimed to evaluate the effect of atmospheric methane enrichment on the abundance of the bacterial and methanotrophic community in ADE soils under forest and cultivation (ADE Forest and ADE Cultivated) and their respective adjacent soils (ADJ Forest and ADJ Cultivated), sampled at Caldeirão Experimental Station (Iranduba, AM). For this purpose, a microcosm experiment was performed in which the soils were incubated under an atmosphere containing 10% of methane and NMS (Nitrate mineral salts) culture medium used for methanotrophic growth in order to evaluate the response of these communities over 21 days. The variation of methane concentrations in the atmosphere of the vials was measured by gas chromatography and the soil DNA recovered in the collection time during the experiment was extracted for use in the technique of quantitative PCR (qPCR), which made it possible to quantify the number of copies of 16S rRNA Bacteria and pmoA on samples. The Amazonian Dark Earth soil showed a potential sink for atmospheric CH4. Comparing atmospheric responses of forest soils (ADE Forest and ADJ Forest) and cultivated soils (ADE Cultivated and ADJ Cultivated), noted a minor variation in the abundance of methatroph community in these last, indicating that land use change affects the ability of it to sink the methane atmosphere. Adjacent soils had different responses of ADE soils, indicating that the history formation, occupation and land use also influence the capacity of the soil to drain methane from the atmosphere.
14

Tracking Carbon Flow during Methane Oxidation into Methanotrophs using 13C-PLFA Labeling in Pulsing Freshwater Wetlands

Roy Chowdhury, Taniya 18 July 2012 (has links)
No description available.
15

Etude des communautés microbiennes fonctionnelles benthiques impliquées dans le cycle du méthane (Lac du Bourget) / Methane cycling microbial benthic communities in lake (Lake Bourget)

Billard, Elodie 17 July 2015 (has links)
Les communautés microbiennes benthiques participent activement au recyclage de la matière organique et de fait au fonctionnement biogéochimique des écosystèmes lacustres. Ces communautés comportent de nombreux phyla mais leur diversité fonctionnelle est encore incomplètement connue. Ce travail vise à appréhender les modifications de structure et d'abondance des gènes fonctionnels en lien avec la distribution spatiale verticale (liée au gradient d'oxydoréduction), la variabilité spatiale horizontale (zone côtière vs pélagique) et la dynamique saisonnière liée au brassage de la colonne d'eau (ré-oxygénation des interfaces benthiques), de même que l'identification de la diversité des méthanotrophes et des méthanogènes.Pour cette étude, des carottes sédimentaires ont été prélevées sur un transect zone côtière – zone pélagique, à différentes dates au cours d'un cycle annuel. Chaque carotte sédimentaire a été analysée dans la verticalité entre l'interface eau-sédiment et 20 cm. Les communautés microbiennes participant au cycle du méthane ont été ciblées par 2 gènes de fonction et étudiées en termes de structure, de diversité et d'abondance; par ailleurs, des marqueurs phylogénétiques ont été utilisés pour caractériser les communautés bactériennes et archéennes totales.Les résultats de l'étude spatiale montrent que, si à l'échelle locale (station d'échantillonnage) une relative homogénéité des communautés microbiennes (totales et fonctionnelles) est observée, des variabilités fortes sont détectées d'une part à l'échelle des transects horizontaux en lien avec des changements de conditions environnementales et d'autre part dans la verticalité des sédiments sous l'effet des conditions d'oxydoréduction. La communauté bactérienne étant la plus affectée dans la verticalité, avec des changements de structure entre toutes les strates étudiées. Dans cette même étude, une analyse comparative de la structure des communautés (totales et fonctionelles) a démontré que l'analyse d'échantillons individuels permettait d'obtenir un plus grand nombre d'OTU que l'analyse des mêmes échantillons regroupés en pools.Les résultats de l'étude de la dynamique temporelle des communautés méthanogènes et méthanotrophes révèlent des changements de structure et abondance, principalement à l'interface eau - sédiment en lien avec la dynamique d'oxygénation du lac. Quant à l'analyse de la diversité, elle montre une dominance des Methanomicrobiales (Methanoregula principalement) pour les méthanogènes, mais les Methanosarcinales (Methanosarcina) et les Methanobacteriales (Methanobacterium) ont également été identifiés. Pour les méthanotrophes, la diversité est dominée par Methylobacter en zone profonde et par Methylococcus en zone côtière, les méthanotrophes de Type II (Methylosinus et Methylocystis) ont aussi été identifiés.L'ensemble de ces travaux souligne l'importance de prendre en compte, à la fois la variabilité spatiale (horizontale et verticale) et la variabilité temporelle, des communautés méthanogènes et méthanotrophes lors de l'étude de ces communautés. Les changements quant à leurs structures et leurs abondances sont des paramètres non négligeables pour comprendre les processus impliqués dans le cycle du méthane. / Benthic microbial communities are actively involved in organic matter recycling and fact biogeochemical functioning of lake ecosystems. These communities comprise many phyla but their functional diversity is still incompletely known. This study is focused on the benthic microbial communities involved in the methane cycle in lacsutrine suystems. We aimed understanding the structural and abundance changes of functional genes related to the vertical distribution (redox gradient in sediment), the horizontal variability (coastal vs. pelagic benthic zone) and seasonal dynamics related to mixing of the water column (re-oxygenation of benthic interface). The composition of methanotrophic and methanogenic communities was characterized by sequencing analyses.For this study, sedimentary cores were sampled along a transect from coastal to pelagic zone, at different times during an annual cycle. In addition, each sediment core was analyzed in its verticality from the water-sediment interface to 20 cm depth. Microbial communities involved in the cycle of methane (methanogenesis and methanotrophy) were targeted by 2 functional genes (mcrA and pmoA). Furthermore, phylogenetic markers were used to characterize the total bacterial and archaeal communities. These communities are studied in terms of structure (genotyping), diversity (sequencing) and abundance (qPCR, DNA) of their functional genes.The results of the study showed that, on a spatial scale, a low heterogeneity was detected for a given sampling station in terms of structure of microbial communities (total and functional), however, a high variability was detected both at an horizontal scale along a transect (costal vs. pelagic zone), due to contrasted environmental conditions, and at a vertical scale (upper to deeper layers in the core) under the effect of redox conditions. The bacterial community being the most affected in the verticality, with structural changes among all strata studied. In the same study, a comparative analysis of the structure (for all of the communities), between pooled samples and individual samples, demonstrated that the analysis of individual samples provided a greater number of OTU for the majority of microbial communities.Moreover the study of the temporal dynamic of methanogen and methanotroph communities revealed changes in the structure and abundance, mainly at the water - sediment interface, according to the oxygenation levels that varied through time. The analysis of diversity showed a dominance of Methanomicrobiales (Methanoregula mainly) for methanogens, but Methanosarcinales (Methanosarcina) and Methanobacteriales (Methanobacterium) were also identified. The methanotrophs' community was dominated by Methylobacter on deeper stations and by Methylococcus in coastal station. Type II methanotrophs (Methylosinus and Methylocystis) were also identified.This work highlights the importance of taking into account both the spatial variability (horizontal and vertical) and the temporal variability of methanogen and methanotroph communities. Changes on their structures and abundances are significant parameters for understanding the processes involved in the methane cycle.
16

Oxydation anaérobie du méthane couplée à la réduction de différents composés du soufre en bioréacteurs / Anaerobic oxidation of methane coupled to the reduction of different sulfur compounds in bioreactors

Cassarini, Chiara 28 June 2017 (has links)
De grandes quantités de méthane sont générées dans les sédiments marins, mais l'émission dans l'atmosphère de ce gaz à effet de serre important est en partie contrôlé par oxydation anaérobie de méthane couplé à la réduction de sulfate (SR AOM). AOM-SR est médiée par des méthanotrophes anaérobies (ANME) et bactéries sulfato-réductrices (SRB). AOM-SR est non seulement la régulation du cycle du méthane, mais il peut être utile appliquée pour la désulfuration des eaux usées industrielles au détriment du méthane comme source de carbone. Cependant, il a une bouilloire jambe pour contrôler et comprendre pleinement ce processus, principalement en raison de la lenteur croissante de l'ANME. Cette recherche a étudié de nouvelles approches pour contrôler et enrichiront ANME AOM SR et SRB dans le but final de la conception d'un bioréacteur approprié pour AOM SR à la pression ambiante et la température. Ceci a été réalisé en étudiant l'effet de (i) la pression et (ii) l'utilisation de différents composés du soufre comme accepteurs d'électrons sur AOM, (iii) la caractérisation de la communauté microbienne et (iv) L'identification des facteurs contrôlant la croissance des ANME et SRB .Théoriquement, le méthane des pressions partielles élevées favorisent AOM-SR, en plus de méthane sera dissoute et biodisponible. La première approche impliquait l'incubation d'un sédiments marins peu profonds (lac marin Gravelines) sous des gradients de pression. De manière surprenante, la plus haute AOM-SR activité a été obtenue à basse pression (MPa 00:45), montrant l'actif ANME méthane préféré faible disponibilité sur haute pression (10, 20, 40 MPa). Fait intéressant, ook l'abondance et la structure des différents types de ANME et CVN Piloté par pression.En outre, les micro-organismes présents dans les sédiments d'oxydation anaérobie de méthane ont été enrichies avec du méthane en tant que substrat dans le filtre de percolateur (BTF) aux conditions ambiantes. Autres composés de soufre (sulfate, thiosulfate et en soufre élémentaire) ont été utilisés comme accepteurs d'électrons. Quand a été utilisé comme thiosulfate accepteur d'électrons, son dismutation en sulfate et de sulfure a été la conversion de soufre dominant, mais les taux les plus élevés UTILE AOM-SR ont été enregistrés dans ce BTF. Par conséquent, AOM peut être directement couplé à la réduction ou thiosulfate, ou à la réduction du sulfate produit par le thiosulfate de dismutation. De plus, l'utilisation de thiosulfate a déclenché l'enrichissement ou SRB. D'autres termes, on a obtenu le plus haut ou l'enrichissement ANME Lorsque seul le sulfate a été utilisé comme accepteur d'électrons.Dans un BTF avec du sulfate en tant qu'accepteur d'électrons, tous deux ANME et SRB ont été enrichies à partir de sédiments marins et les flux de carbone à l'intérieur des micro-organismes enrichis ont été étudiés par fluorescence in situ échelle hybridation nanomètres spectrométrie de masse d'ions secondaires (SIMS Nano-FISH). Les résultats préliminaires montrent l'absorption du méthane par un groupe spécifique de SRB.ANME et SRB adaptée aux conditions de sédiments profonds ont été enrichis dans un BTF à la pression ambiante et de la température. Le BTF est une combinaison bioréacteur de démarrage pour l'enrichissement ou lente des micro-organismes en croissance. De plus, peut être utilisé thiosulfate pour activer les sédiments et enrichir la communauté SRB plus d'enrichir la population stratégie ANME pour obtenir une haute AOM SR et plus rapide taux de croissance ANME et SRB pour les applications futures / Large amounts of methane are generated in marine sediments, but the emission to the atmosphere of this important greenhouse gas is partly controlled by anaerobic oxidation of methane coupled to sulfate reduction (AOM-SR). AOM-SR is mediated by anaerobic methanotrophs (ANME) and sulfate reducing bacteria (SRB). AOM-SR is not only regulating the methane cycle but it can also be applied for the desulfurization of industrial wastewater at the expense of methane as carbon source. However, it has been difficult to control and fully understand this process, mainly due to the slow growing nature of ANME. This research investigated new approaches to control AOM-SR and enrich ANME and SRB with the final purpose of designing a suitable bioreactor for AOM-SR at ambient pressure and temperature. This was achieved by studying the effect of (i) pressure and of (ii) the use of different sulfur compounds as electron acceptors on AOM, (iii) characterizing the microbial community and (iv) identifying the factors controlling the growth of ANME and SRB.Theoretically, elevated methane partial pressures favor AOM-SR, as more methane will be dissolved and bioavailable. The first approach involved the incubation of a shallow marine sediment (marine Lake Grevelingen) under pressure gradients. Surprisingly, the highest AOM-SR activity was obtained at low pressure (0.45 MPa), showing that the active ANME preferred scarce methane availability over high pressure (10, 20, 40 Mpa). Interestingly, also the abundance and structure of the different type of ANME and SRB were steered by pressure.Further, microorganisms from anaerobic methane oxidizing sediments were enriched with methane gas as the substrate in biotrickling filters (BTF) at ambient conditions. Alternative sulfur compounds (sulfate, thiosulfate and elemental sulfur) were used as electron acceptors. When thiosulfate was used as electron acceptor, its disproportionation to sulfate and sulfide was the dominating sulfur conversion, but also the highest AOM-SR rates were registered in this BTF. Therefore, AOM can be directly coupled to the reduction of thiosulfate, or to the reduction of sulfate produced by thiosulfate disproportionation. Moreover, the use of thiosulfate triggered the enrichment of SRB. Differently, the highest enrichment of ANME was obtained when only sulfate was used as electron acceptor.In a BTF with sulfate as electron acceptor, both ANME and SRB were enriched from marine sediment and the carbon fluxes within the enriched microorganisms were studied through fluorescence in-situ hybridization-nanometer scale secondary ion mass spectrometry (FISH-NanoSIMS). Preliminary results showed the uptake of methane by a specific group of SRB.ANME and SRB adapted to deep sediment conditions were enriched in a BTF at ambient pressure and temperature. The BTF is a suitable bioreactor for the enrichment of slow growing microorganisms. Moreover, thiosulfate can be used to activate the sediment and enrich the SRB community to further enrich the ANME population as strategy to obtain high AOM-SR and faster ANME and SRB growth rates for future applications
17

Development of a Biomass-to-Methanol Process Integrating Solid State Anaerobic Digestion and Biological Conversion of Biogas to Methanol

Sheets, Johnathon P. 12 October 2017 (has links)
No description available.
18

Studying Methanotrophic Bacterial Diversity in Ohio Soils Using High-Throughput Sequence Analysis

Sengupta, Adti 13 October 2015 (has links)
No description available.
19

Diversité des archées et implication de la composante procaryote dans le cycle biogéochimique du méthane en milieu aquatique continental : études taxonomiques et fonctionnelles dans la colonne d'eau et les sédiments anoxiques du lac Pavin / Diversity of archaea and implication of prokaryotes in the biochemical cycle of methane in continental aquatic environments : taxonomic and functional studies in the water column and the anoxic sediments of Lake Pavin

Borrel, Guillaume 07 November 2011 (has links)
Le méthane, un des principaux gaz à effet de serre, est majoritairement produit et consommé par l'activité métabolique de microorganismes affiliés aux domaines des Archaea et des Bacteria. Afin d’appréhender le cycle biogéochimique du méthane, il est essentiel d’identifier l’ensemble des acteurs impliqués dans ce dernier ainsi que les facteurs environnementaux modulant leurs activités. Les lacs d’eau douce constituent une source importante de méthane, car, dans ces écosystèmes, les conditions environnementales favorisent la méthanogenèse au détriment d’autres processus terminaux de la dégradation anaérobie de la matière organique. Au cours de cette thèse, les études sur les communautés impliquées dans le cycle biogéochimique du méthane ont été conduites dans la colonne d’eau et les sédiments anoxiques du Lac Pavin (Auvergne), unique lac méromictique de France. Cet écosystème a été choisi comme site d'étude en raison des fortes concentrations en méthane présentes dans sa couche d'eau profonde qui contrastent avec les faibles émissions de ce gaz vers l'atmosphère. Ces observations géochimiques suggèrent une intense activité de production et de consommation du méthane, offrant un cadre pertinent pour l’étude des communautés ciblées. Les approches moléculaires visant à caractériser la structure spatiale, la composition, les zones d'activité et les facteurs (ascendants et descendants) potentiellement impliqués dans la régulation des communautés de méthanogènes et de méthanotrophes ont été, au cours de ce travail, systématiquement associées à des approches culturales et microcalorimétriques afin d’acquérir des données sur la physiologie des microorganismes impliqués dans le cycle du méthane. Les résultats obtenus mettent en évidence que les communautés de méthanogènes sont distribuées sur l’ensemble de la colonne d’eau anoxique et dans la strate superficielle des sédiments profonds. Ce groupe métabolique, essentiellement représenté par des espèces affiliées aux Methanosaetaceae et aux Methanoregulaceae, est particulièrement actif dans la zone benthique qui constituerait la source principale de méthane dans cet écosystème. Une nouvelle espèce méthanogène, Methanobacterium lacus, a été isolée de ces sédiments et décrite, et vient enrichir le faible nombre d'espèces méthanogènes isolées à ce jour à partir des lacs d'eau douce. L'étude écophysiologique de cette souche suggère que la température pourrait en partie expliquer la faible représentativité des Methanobacteriales dans cet écosystème. Une partie du méthane semble être directement consommée dans la zone anoxique (pélagique et benthique). L’existence de ce processus d’oxydation anaérobie, soutenu par les approches microcalorimétriques, pourrait être, dans les sédiments profonds, sous la dépendance de lignées candidates archéennes dont la physiologie reste encore énigmatique. Le remplacement progressif des méthanogènes par 2 lignées candidates d'archaea (MBG-D et MCG) le long du profil sédimentaire suggère qu'elle se développe dans des niche contrastées. La régulation putative des communautés archéennes par les virus a été analysée. Cette étude est la première à rapporter la présence de particules virales de type "archaeovirus" dans un environnement non-extrême (en termes de température, pH et salinité) ainsi que des particules virales pouvant représentées de nouvelles familles de virus. Une activité virale intense est suggérée dans ces sédiments par le nombre important de cellules infectées, comparativement à d'autres sédiments, et par le changement concomitant de la structure de la communauté virale et procaryotique avec la profondeur. Bien qu’une partie du méthane soit probablement oxydée en anaérobiose, la consommation de ce métabolite est principalement dépendante de l’activité de méthanotrophes aérobies dominées par des espèces affiliées au genre Methylobacter, un des principaux genres de méthanotrophes rencontré en milieu d’eau douce. (...) / Methane, a major greenhouse gas, is produced and consumed mainly by the metabolic activity of microorganisms affiliated to the domains Archaea and Bacteria. In order to understand the biogeochemical cycling of methane, it is essential to identify all the biological actors involved, as well as environmental factors modulating their activity. Freshwater lakes are a major source of methane because environmental conditions occurring in these ecosystems favor methanogenesis over other terminal processes of anaerobic degradation of organic matter. In this thesis, studies of communities involved in the biogeochemical cycling of methane were carried out in the water column and anoxic sediment of Lake Pavin (Auvergne), the unique French meromictic lake. This ecosystem has been selected as study site due to the high concentrations of methane in its deep water layer which contrast with the very low emission of this gas in the atmosphere. These geochemical observations suggest an intense activity of production and consumption of methane, providing an appropriate framework for studying the communities involved. Molecular approaches to characterize the spatial structure, composition, activity areas and factors (bottom-up and top-down) potentially involved in the regulation of methanogens and methanotrophs were, in this work, systematically associated to cultural and microcalorimetric approaches to acquire data on the physiology of microorganisms involved in the methane cycle. The results show that methanogens are distributed throughout the permanent anoxic water column (monimolimnion) and mainly in the superficial layer of the sediment situated under the monimolimnion. This metabolic group, mainly represented by species affiliated to Methanosaetaceae and Methanoregulaceae, is particularly active in the benthic zone which would be the main source of methane in this ecosystem. A new species of methanogen, Methanobacterium lacus, was isolated from these sediments and described. It enhances to the small number of methanogenic species isolated to date from freshwater lakes. The ecophysiological study of this strain suggests that the temperature could partly explain the low representation of Methanobacteriales in this ecosystem. A part of the methane appears to be directly consumed in the anoxic zone (pelagic and benthic). The existence of this process of anaerobic oxidation, supported by microcalorimetric approaches, could be in deep sediments, dependent on archaeal candidate lineages whose physiology remains enigmatic. The gradual replacement of methanogens by two archaeal candidate lineages (MBG-D and MCG) along the sedimentary profile suggests that they live in contrasted niche. The putative regulation of the archaeal communities by virus was analyzed. This study has reported the first observations of archaeovirus-like particles in a non-extreme environment (in term of temperature, pH and salinity) and virus-like particles which might represent new viral families. An intense viral activity in these sediments is suggested by i) the important number of visibly infected cells and ii) the concomitant change of the viral and prokaryotic communities with depth. While a fraction of methane is probably oxidized anaerobically, the consumption of this metabolite is mainly dependent on the activity of aerobic methanotrophs dominated by species affiliated to the genus Methylobacter, one of the main types of methanotrophs found in freshwater environments.These methanotrophs have a large area of activity, extending around both sides of the red/ox interface in the water column. This wide distribution may partly explain the low quantity of methane released by the Lake Pavin. (...)
20

<i>In-vitro </i>and <i>In-vivo </i>Characterization of Intracytoplasmic Membranes and Polyhydroxybutyrate in Type I and Type II MethanotrophsandRole of Eicosanoids in Airway Remodeling

Gudneppanavar, Ravindra 07 May 2022 (has links)
No description available.

Page generated in 0.06 seconds