• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial communities in organic substrates used for oil sands reclamation and their link to boreal seedling growth

Beasse, Mark L Unknown Date
No description available.
2

Associations between plasma fatty acids, dietary fatty acids and cardiovascular risk factors : the PURE study / Marilize Richter

Richter, Marilize January 2014 (has links)
Background: Cardiovascular disease (CVD) is the leading global cause of death. CVD risk factors are considered intermediaries for the association between dietary fatty acids and CVD. Raised plasma total cholesterol, low density lipoprotein (LDL) cholesterol, raised triglycerides and decreased levels of high density lipoprotein (HDL) cholesterol, as well as reduced fibrinolytic potential (measured as increased clot lysis time) are known risk factors for CVD. Plasminogen activator inhibitor-1 (PAI-1) is a major inhibitor of the fibrinolytic process and an elevated PAI-1 level is therefore considered to be a potential risk factor for CVD. The growing number of controversies around the role that fat intake (more specifically the type of dietary fat) plays in CVD risk, is making it increasingly difficult for consumers and practitioners alike to form conclusions, and make recommendations and decisions regarding fat intake. Knowledge of the intake of individual fatty acids, fatty acid status (as opposed to subgroups of fat such as polyunsaturated fatty acids) and their associations with blood lipids, PAI-1act and fibrinolytic potential is lacking in black South Africans and other populations. Therefore we aimed to investigate dietary fatty acid intake, as well as plasma phospholipid fatty acid status and their associations with blood lipids, PAI-1act and clot lysis time, as a marker for fibrinolytic potential. Methods: Cross-sectional data analysis within the Prospective Rural Urban Epidemiology (PURE) baseline study of apparently healthy black South African men and women (n=1950, 35– 70 years) from rural and urban areas in the North West Province, from whom dietary data were collected. Blood lipid analyses, as well as laboratory analyses of fibrinolysis markers such as PAI-1act and clot lysis time were also performed. Plasma phospholipid fatty acid extraction and isolation were performed on a random subsample (n = 716). Results: The intake of individual fatty acids was significantly higher in urban than rural dwellers. However, the intake of omega-3 polyunsaturated fatty acids was below recommendations in all groups (rural and urban males, and rural and urban females). Total cholesterol and LDL cholesterol were higher in females than in males, with no rural‒urban differences. Intake of alpha-linolenic acid was positively associated with total cholesterol (β=0.143) and triglycerides (β=0.256) in males. The risk of having elevated LDL cholesterol also increased with increased intake of alpha-linolenic acid (OR 1.49, 95% CI 1.04, 2.14). In females, dietary arachidonic acid and eicosapentaenoic acid (EPA) were positively associated with total cholesterol and LDL cholesterol, whereas docosahexaenoic acid (DHA) was negatively associated with total cholesterol and LDL cholesterol. Dietary alpha-linolenic acid was positively correlated with plasma EPA (males r = 0.19, p = 0.002, females r = 0.25, p < 0.001) and DHA (males r = 0.33, p < 0.001, females r = 0.30, p < 0.001). Plasma DHA was positively associated with triglycerides in males (β = 0.410, p< 0.001) and in females (β = 0.379, p< 0.001). PAI-1act was positively associated with clot lysis time, and plasma myristic acid and DHA were positively associated with PAI-1act in females. However, these fatty acids were not associated with clot lysis time. Different types of plasma fatty acids were associated with PAI-1act than with clot lysis time. Plasma alpha-linolenic acid (β = 0.123, P = 0.037), mead acid (β = 0.176, P = 0.019), arachidonic acid (β = 0.253, 0.025) and omega-3 docosapentaenoic acid (omega-3 DPA) (β = 0.224, P = 0.002) were positively associated with clot lysis time, while both myristic acid (β = - 0.130, P = 0.016) and EPA (β = -0.131, P = 0.021) were negatively associated with clot lysis time in male subjects. Plasma oleic acid (C18:1n9) (β = -0.411, P = 0.001) and omega-6 DPA (C22:5n6) (β = -0.285, P = 0.001) were negatively associated with clot lysis time, while dihomogamma- liolenic acid (DGLA) (C20:3n6) were positively associated (β = 0.178, P = 0.001) with clot lysis time in females. Conclusions: These results suggest that specific individual dietary fatty acids might be associated with blood lipids in males differently than in females, irrespective of rural or urban dwelling. It is not known however, if associations would still be present under conditions of greater intake of alpha-linolenic acid. Our results further suggest that a higher percentage of alpha-linolenic acid might be converted to DHA in this population with low intake of essential and long-chain polyunsaturated fatty acids compared to populations with a high intake of these fatty acids. These results suggest that plasma phospholipid fatty acids should not be used in isolation as biomarkers for intake of fat, without taking dietary intake data into consideration also. Associations between fatty acids and clot lysis time might be independent from PAI-1act. The association between mead acid and clot lysis time indicates that clot lysis time might increase with an essential fatty acid deficiency. This may be of particular concern in this population with a documented lower fat intake. Because the study design of this study is crosssectional, it is not able to determine cause-and-effect, and results should therefore be verified with a randomised controlled trial. / PhD (Nutrition), North-West University, Potchefstroom Campus, 2015
3

Associations between plasma fatty acids, dietary fatty acids and cardiovascular risk factors : the PURE study / Marilize Richter

Richter, Marilize January 2014 (has links)
Background: Cardiovascular disease (CVD) is the leading global cause of death. CVD risk factors are considered intermediaries for the association between dietary fatty acids and CVD. Raised plasma total cholesterol, low density lipoprotein (LDL) cholesterol, raised triglycerides and decreased levels of high density lipoprotein (HDL) cholesterol, as well as reduced fibrinolytic potential (measured as increased clot lysis time) are known risk factors for CVD. Plasminogen activator inhibitor-1 (PAI-1) is a major inhibitor of the fibrinolytic process and an elevated PAI-1 level is therefore considered to be a potential risk factor for CVD. The growing number of controversies around the role that fat intake (more specifically the type of dietary fat) plays in CVD risk, is making it increasingly difficult for consumers and practitioners alike to form conclusions, and make recommendations and decisions regarding fat intake. Knowledge of the intake of individual fatty acids, fatty acid status (as opposed to subgroups of fat such as polyunsaturated fatty acids) and their associations with blood lipids, PAI-1act and fibrinolytic potential is lacking in black South Africans and other populations. Therefore we aimed to investigate dietary fatty acid intake, as well as plasma phospholipid fatty acid status and their associations with blood lipids, PAI-1act and clot lysis time, as a marker for fibrinolytic potential. Methods: Cross-sectional data analysis within the Prospective Rural Urban Epidemiology (PURE) baseline study of apparently healthy black South African men and women (n=1950, 35– 70 years) from rural and urban areas in the North West Province, from whom dietary data were collected. Blood lipid analyses, as well as laboratory analyses of fibrinolysis markers such as PAI-1act and clot lysis time were also performed. Plasma phospholipid fatty acid extraction and isolation were performed on a random subsample (n = 716). Results: The intake of individual fatty acids was significantly higher in urban than rural dwellers. However, the intake of omega-3 polyunsaturated fatty acids was below recommendations in all groups (rural and urban males, and rural and urban females). Total cholesterol and LDL cholesterol were higher in females than in males, with no rural‒urban differences. Intake of alpha-linolenic acid was positively associated with total cholesterol (β=0.143) and triglycerides (β=0.256) in males. The risk of having elevated LDL cholesterol also increased with increased intake of alpha-linolenic acid (OR 1.49, 95% CI 1.04, 2.14). In females, dietary arachidonic acid and eicosapentaenoic acid (EPA) were positively associated with total cholesterol and LDL cholesterol, whereas docosahexaenoic acid (DHA) was negatively associated with total cholesterol and LDL cholesterol. Dietary alpha-linolenic acid was positively correlated with plasma EPA (males r = 0.19, p = 0.002, females r = 0.25, p < 0.001) and DHA (males r = 0.33, p < 0.001, females r = 0.30, p < 0.001). Plasma DHA was positively associated with triglycerides in males (β = 0.410, p< 0.001) and in females (β = 0.379, p< 0.001). PAI-1act was positively associated with clot lysis time, and plasma myristic acid and DHA were positively associated with PAI-1act in females. However, these fatty acids were not associated with clot lysis time. Different types of plasma fatty acids were associated with PAI-1act than with clot lysis time. Plasma alpha-linolenic acid (β = 0.123, P = 0.037), mead acid (β = 0.176, P = 0.019), arachidonic acid (β = 0.253, 0.025) and omega-3 docosapentaenoic acid (omega-3 DPA) (β = 0.224, P = 0.002) were positively associated with clot lysis time, while both myristic acid (β = - 0.130, P = 0.016) and EPA (β = -0.131, P = 0.021) were negatively associated with clot lysis time in male subjects. Plasma oleic acid (C18:1n9) (β = -0.411, P = 0.001) and omega-6 DPA (C22:5n6) (β = -0.285, P = 0.001) were negatively associated with clot lysis time, while dihomogamma- liolenic acid (DGLA) (C20:3n6) were positively associated (β = 0.178, P = 0.001) with clot lysis time in females. Conclusions: These results suggest that specific individual dietary fatty acids might be associated with blood lipids in males differently than in females, irrespective of rural or urban dwelling. It is not known however, if associations would still be present under conditions of greater intake of alpha-linolenic acid. Our results further suggest that a higher percentage of alpha-linolenic acid might be converted to DHA in this population with low intake of essential and long-chain polyunsaturated fatty acids compared to populations with a high intake of these fatty acids. These results suggest that plasma phospholipid fatty acids should not be used in isolation as biomarkers for intake of fat, without taking dietary intake data into consideration also. Associations between fatty acids and clot lysis time might be independent from PAI-1act. The association between mead acid and clot lysis time indicates that clot lysis time might increase with an essential fatty acid deficiency. This may be of particular concern in this population with a documented lower fat intake. Because the study design of this study is crosssectional, it is not able to determine cause-and-effect, and results should therefore be verified with a randomised controlled trial. / PhD (Nutrition), North-West University, Potchefstroom Campus, 2015
4

Soil microbial community function and structure as assessment criteria for the rehabilitation of coal discard sites in South Africa / Sarina Claassens

Claassens, Sarina January 2003 (has links)
Mining activities cause severe disturbance to the soil environment in terms of soil quality and productivity and are of serious concern worldwide. Under South African legislation, developers are required to ecologically rehabilitate damaged environments. The application of agronomic approaches for the rehabilitation of coal discard sites has failed dismally in the arid areas of southern Africa. It is obvious that compliance with mitigation and rehabilitation requirements cannot be enforced without a thorough understanding of the ecological principles that ensure ecological stability and subsequent sustainability of soil ecosystems. Soil micro organisms are crucial role-players in the processes that make energy and nutrients available for recycling in the soil ecosystem. Poor management practices and other negative impacts on soil ecosystems affect both the physical and chemical properties of soil, as well as the functional and structural properties of soil microbial communities. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, plant reestablishment and long-term stability. In this regard, an extensive overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, enzymatic activity and the analysis of microbial community structure by the quantification of specific signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between the physical and chemical characteristics and different biological indicators of soil quality in the topsoil covers of seven coal discard sites under rehabilitation in South Africa, as well as three reference sites was investigated. Through the assimilation of basic quantitative data and the assessment of certain physical, chemical and biological properties of the topsoil covers obtained from the various coal discard sites as well as the reference sites, the relative success or progress of rehabilitation and the possible correlation between the biological indicators of soil quality and the establishment of self sustaining vegetation covers was determined. Results from soil physical and chemical analyses and percentage vegetation cover were correlated with the results obtained for the functional and structural diversity of microbial communities at the various sites. All results were investigated through statistical and multivariate analysis and the most prominent physical and chemical parameters that influence the biological and biochemical properties of the soil and possibly the establishment of self-sustainable vegetation cover on these mine-tailing sites were identified. Results obtained from this study indicated no significant difference (p>0.05) between the various discard sites based on conventional microbiological enumeration techniques. However, significant differences (p<0.05) could be observed between the three reference sites. All enzymatic activities assayed for the rehabilitation sites, with the exception of urease and alkaline phosphatase displayed a strong, positive association with the organic carbon content (%C). Ammonium concentration had a weak association with all the enzymes studied and pH only showed a negative association with acid phosphatase activity. A positive association was observed between the viable microbial biomass, vegetation cover and the organic carbon content, ammonium, nitrate and phosphorus concentrations of the soil. The various rehabilitation and reference sites could be differentiated based on the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. It is hypothesised that the microbial community structure of the Hendrina site is not sustainable when classified along an r-K gradient and that the high percentage of vegetation cover and high levels of estimated viable microbial biomass are an artificial reflection of the current management practices being employed at this site. Results obtained during this study, suggest that an absence or low percentage of vegetation cover and associated lower organic matter content of the soil have a significant negative impact on soil biochemical properties (enzymatic activity) as well as microbial population size. Furthermore, prevailing environmental physico-chemical and management characteristics significantly influences the vegetation cover and subsequently the microbial community structure. The results indicate that the microbial ecosystems in the coal discard sites could become more stable and ecologically self-regulating, provided effective management to enhance the organic carbon content of the soil. This could enhance nutrient cycling, resulting in changes of soil structure and eventually an improved soil quality which could facilitate the establishment of self sustaining vegetation cover. Results obtained during this study suggest that a polyphasic assessment of physical and chemical properties; microbial activities by enzymatic analysis; the characterisation of microbial community structure by analysis of phospholipid fatty acids; and the multifactorial analysis of the data obtained can be used as complementary assessment criteria for the evaluation of the trend of rehabilitation of mine tailings and discard sites. Strategic management criteria are recommended based on the soil quality environmental sustainability indices to facilitate the establishment of self sustainable vegetation covers. The contribution of this research to soil ecology is significant with regards to the intensive investigation and explanation of characteristics and processes that drive ecological rehabilitation and determine the quality of the soil environment. The multidisciplinary approach that is proposed could, furthermore, assist in the successful rehabilitation and establishment of self-sustaining vegetation covers at industrially disturbed areas, as well as assist in improving degraded soil quality associated with both intensive and informal agriculture. Additionally, this approach could negate the negative social and environmental impacts frequently associated with these activities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2004.
5

Soil microbial community function and structure as assessment criteria for the rehabilitation of coal discard sites in South Africa / Sarina Claassens

Claassens, Sarina January 2003 (has links)
Mining activities cause severe disturbance to the soil environment in terms of soil quality and productivity and are of serious concern worldwide. Under South African legislation, developers are required to ecologically rehabilitate damaged environments. The application of agronomic approaches for the rehabilitation of coal discard sites has failed dismally in the arid areas of southern Africa. It is obvious that compliance with mitigation and rehabilitation requirements cannot be enforced without a thorough understanding of the ecological principles that ensure ecological stability and subsequent sustainability of soil ecosystems. Soil micro organisms are crucial role-players in the processes that make energy and nutrients available for recycling in the soil ecosystem. Poor management practices and other negative impacts on soil ecosystems affect both the physical and chemical properties of soil, as well as the functional and structural properties of soil microbial communities. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, plant reestablishment and long-term stability. In this regard, an extensive overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, enzymatic activity and the analysis of microbial community structure by the quantification of specific signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between the physical and chemical characteristics and different biological indicators of soil quality in the topsoil covers of seven coal discard sites under rehabilitation in South Africa, as well as three reference sites was investigated. Through the assimilation of basic quantitative data and the assessment of certain physical, chemical and biological properties of the topsoil covers obtained from the various coal discard sites as well as the reference sites, the relative success or progress of rehabilitation and the possible correlation between the biological indicators of soil quality and the establishment of self sustaining vegetation covers was determined. Results from soil physical and chemical analyses and percentage vegetation cover were correlated with the results obtained for the functional and structural diversity of microbial communities at the various sites. All results were investigated through statistical and multivariate analysis and the most prominent physical and chemical parameters that influence the biological and biochemical properties of the soil and possibly the establishment of self-sustainable vegetation cover on these mine-tailing sites were identified. Results obtained from this study indicated no significant difference (p>0.05) between the various discard sites based on conventional microbiological enumeration techniques. However, significant differences (p<0.05) could be observed between the three reference sites. All enzymatic activities assayed for the rehabilitation sites, with the exception of urease and alkaline phosphatase displayed a strong, positive association with the organic carbon content (%C). Ammonium concentration had a weak association with all the enzymes studied and pH only showed a negative association with acid phosphatase activity. A positive association was observed between the viable microbial biomass, vegetation cover and the organic carbon content, ammonium, nitrate and phosphorus concentrations of the soil. The various rehabilitation and reference sites could be differentiated based on the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. It is hypothesised that the microbial community structure of the Hendrina site is not sustainable when classified along an r-K gradient and that the high percentage of vegetation cover and high levels of estimated viable microbial biomass are an artificial reflection of the current management practices being employed at this site. Results obtained during this study, suggest that an absence or low percentage of vegetation cover and associated lower organic matter content of the soil have a significant negative impact on soil biochemical properties (enzymatic activity) as well as microbial population size. Furthermore, prevailing environmental physico-chemical and management characteristics significantly influences the vegetation cover and subsequently the microbial community structure. The results indicate that the microbial ecosystems in the coal discard sites could become more stable and ecologically self-regulating, provided effective management to enhance the organic carbon content of the soil. This could enhance nutrient cycling, resulting in changes of soil structure and eventually an improved soil quality which could facilitate the establishment of self sustaining vegetation cover. Results obtained during this study suggest that a polyphasic assessment of physical and chemical properties; microbial activities by enzymatic analysis; the characterisation of microbial community structure by analysis of phospholipid fatty acids; and the multifactorial analysis of the data obtained can be used as complementary assessment criteria for the evaluation of the trend of rehabilitation of mine tailings and discard sites. Strategic management criteria are recommended based on the soil quality environmental sustainability indices to facilitate the establishment of self sustainable vegetation covers. The contribution of this research to soil ecology is significant with regards to the intensive investigation and explanation of characteristics and processes that drive ecological rehabilitation and determine the quality of the soil environment. The multidisciplinary approach that is proposed could, furthermore, assist in the successful rehabilitation and establishment of self-sustaining vegetation covers at industrially disturbed areas, as well as assist in improving degraded soil quality associated with both intensive and informal agriculture. Additionally, this approach could negate the negative social and environmental impacts frequently associated with these activities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2004.
6

Soilborne disease suppressiveness / conduciveness : analysis of microbial community dynamics / by Johannes Hendrikus Habig

Habig, Johannes Hendrikus January 2003 (has links)
Take-all is the name given to the disease caused by a soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx and Olivier var. tritici Walker (Ggt), an ascomycete of the family Magnaportheaceae (Cook, 2003). This fungus is an aggressive soil-borne pathogen causing root rot of wheat (primary host), barley and rye crops (secondary host). The flowering, seedling, and vegetative growth stages can be affected by the infection of the whole plant, leaves, roots, and stems. Infections of roots result in losses in crop yield and quality primarily due to a lowering in nutrient uptake. Take-all is most common in regions where wheat is cultivated without adequate crop rotation. Crop rotation allows time between the planting dates of susceptible crops, which causes a decrease in the inoculum potential of soilborne plant pathogens to levels below an economic threshold by resident antagonistic soil microbial communities. Soilborne disease suppressiveness is an inherent characteristic of the physical, chemical, and/or biological structure of a particular soil which might be induced by agricultural practices and activities such as the cultivation of crops, or the addition of organisms or nutritional amendments, causing a change in the microfloral environment. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, and long-term stability. In this regard, an overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, the analysis of microbial functional diversity and microbial structural diversity by the quantification of community level physiological profiles and signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between physico-chemical characteristics, and different biological indicators of soil quality of agricultural soils conducive, suppressive, and neutral with respect to take-all disease of wheat as caused by the soilborne fungus Gaeumannomyces graminis var. tritici (Ggt), were investigated using various techniques. The effect of crop rotation on the functional and structural diversity of soils conducive to take-all disease was also investigated. Through the integration of quantitative and qualitative biological data as well as the physico-chemical characteristics of the various soils, the functional and structural diversity of microbial IV communities in the soils during different stadia of take-all disease of wheat were characterised. All results were evaluated statistically and the predominant physical and chemical characteristics that influenced the microbiological and biochemical properties of the agricultural soils during different stadia of take-all disease of wheat were identified using multivariate analyses. Although no significant difference @ > 0.05) could be observed between the various soils using conventional microbiological enumeration techniques, the incidence of Gliocladium spp. in suppressive soils was increased. Significant differences @ < 0.05) were observed between agricultural soils during different stadia of take-all disease of wheat. Although no clear distinction could be made between soils suppressive and neutral to take-all disease of wheat, soils suppressive and conducive to take-all disease of wheat differed substantially in their community level physiological profiles (CLPPs). Soils suppressive / neutral to take-all disease were characterised by enhanced utilisation of carboxylic acids, amino acids, and carbohydrates, while conducive soils were characterised by enhanced utilisation of carbohydrates. Shifts in the functional diversity of the associated microbial communities were possibly caused by the presence of Ggt and associated antagonistic fungal and bacterial populations in the various soils. It was evident that the relationships amongst the functionality of the microbial communities within the various soils had undergone changes through the different stages of development of take-all disease of wheat, thus implying different substrate utilisation capabilities of present soil microbial communities. Diversity indices were calculated as Shannon's diversity index (H') and substrate equitability (J) and were overall within the higher diversity range of 3.6 and 0.8, respectively, indicating the achievement of very high substrate diversity values in the various soils. A substantial percentage of the carbon sources were utilised, which contributed to the very high Shannon-Weaver substrate utilisation indices. Obtained substrate evenness (equitability) (J) indices indicated an existing high functional diversity. The functional diversity as observed during crop rotation, differed significantly (p < 0.05) from each other, implying different substrate utilisation capabilities of present soil microbial communities, which could possibly be ascribed to the excretion of root exudates by sunflowers and soybeans. Using the Sorenson's index, a clear distinction could be made between the degrees of substrate utilisation between microbial populations in soils conducive, suppressive, and neutral to take-all disease of wheat, as well as during crop rotation. Furthermore, the various soils could also be differentiated on the basis of the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Soils conducive and neutral to take-all disease of wheat were characterised by high concentrations of manganese, as well as elevated concentrations of monounsaturated fatty acids, terminally branched saturated fatty acids, and polyunsaturated fatty acids which were indicative of Gram-negative bacteria, Gram-positive bacteria and micro eukaryotes (primarily fungi), respectively. These soils were also characterised by low concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as low soil pH. Soil suppressive to take-all disease of wheat was characterised by the elevated levels of estimated of biomass and elevated concentrations of normal saturated fatty acids, which is ubiquitous to micro-organisms. The concentration of normal saturated fatty acids in suppressive soils is indicative of a low structural diversity. This soil was also characterised by high concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as elevated soil pH. The relationship between PLFAs and agricultural soils was investigated using principal component analysis (PCA), redundancy analysis (RDA) and discriminant analysis (DA). Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Hierarchical cluster analysis of the major phospholipid fatty acid groups indicated that the structural diversity differed significantly between soils conducive, suppressive, and neutral to take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. The results indicate that the microbial community functionality as well as the microbial community structure was significantly influenced by the presence of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici, and that the characterisation of microbial functional and structural diversity by analysis of community level physiological profiles and phospholipid fatty acid analysis, respectively, could be successfully used as an assessment criteria for the evaluation of agricultural soils conducive, suppressive, and neutral to take-all disease of wheat, as well as in crop rotation systems. This methodology might be of significant value in assisting in the management and evaluation of agricultural soils subject to the prevalence of other soilborne diseases. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2004.
7

Soilborne disease suppressiveness / conduciveness : analysis of microbial community dynamics / by Johannes Hendrikus Habig

Habig, Johannes Hendrikus January 2003 (has links)
Take-all is the name given to the disease caused by a soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx and Olivier var. tritici Walker (Ggt), an ascomycete of the family Magnaportheaceae (Cook, 2003). This fungus is an aggressive soil-borne pathogen causing root rot of wheat (primary host), barley and rye crops (secondary host). The flowering, seedling, and vegetative growth stages can be affected by the infection of the whole plant, leaves, roots, and stems. Infections of roots result in losses in crop yield and quality primarily due to a lowering in nutrient uptake. Take-all is most common in regions where wheat is cultivated without adequate crop rotation. Crop rotation allows time between the planting dates of susceptible crops, which causes a decrease in the inoculum potential of soilborne plant pathogens to levels below an economic threshold by resident antagonistic soil microbial communities. Soilborne disease suppressiveness is an inherent characteristic of the physical, chemical, and/or biological structure of a particular soil which might be induced by agricultural practices and activities such as the cultivation of crops, or the addition of organisms or nutritional amendments, causing a change in the microfloral environment. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, and long-term stability. In this regard, an overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, the analysis of microbial functional diversity and microbial structural diversity by the quantification of community level physiological profiles and signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between physico-chemical characteristics, and different biological indicators of soil quality of agricultural soils conducive, suppressive, and neutral with respect to take-all disease of wheat as caused by the soilborne fungus Gaeumannomyces graminis var. tritici (Ggt), were investigated using various techniques. The effect of crop rotation on the functional and structural diversity of soils conducive to take-all disease was also investigated. Through the integration of quantitative and qualitative biological data as well as the physico-chemical characteristics of the various soils, the functional and structural diversity of microbial IV communities in the soils during different stadia of take-all disease of wheat were characterised. All results were evaluated statistically and the predominant physical and chemical characteristics that influenced the microbiological and biochemical properties of the agricultural soils during different stadia of take-all disease of wheat were identified using multivariate analyses. Although no significant difference @ > 0.05) could be observed between the various soils using conventional microbiological enumeration techniques, the incidence of Gliocladium spp. in suppressive soils was increased. Significant differences @ < 0.05) were observed between agricultural soils during different stadia of take-all disease of wheat. Although no clear distinction could be made between soils suppressive and neutral to take-all disease of wheat, soils suppressive and conducive to take-all disease of wheat differed substantially in their community level physiological profiles (CLPPs). Soils suppressive / neutral to take-all disease were characterised by enhanced utilisation of carboxylic acids, amino acids, and carbohydrates, while conducive soils were characterised by enhanced utilisation of carbohydrates. Shifts in the functional diversity of the associated microbial communities were possibly caused by the presence of Ggt and associated antagonistic fungal and bacterial populations in the various soils. It was evident that the relationships amongst the functionality of the microbial communities within the various soils had undergone changes through the different stages of development of take-all disease of wheat, thus implying different substrate utilisation capabilities of present soil microbial communities. Diversity indices were calculated as Shannon's diversity index (H') and substrate equitability (J) and were overall within the higher diversity range of 3.6 and 0.8, respectively, indicating the achievement of very high substrate diversity values in the various soils. A substantial percentage of the carbon sources were utilised, which contributed to the very high Shannon-Weaver substrate utilisation indices. Obtained substrate evenness (equitability) (J) indices indicated an existing high functional diversity. The functional diversity as observed during crop rotation, differed significantly (p < 0.05) from each other, implying different substrate utilisation capabilities of present soil microbial communities, which could possibly be ascribed to the excretion of root exudates by sunflowers and soybeans. Using the Sorenson's index, a clear distinction could be made between the degrees of substrate utilisation between microbial populations in soils conducive, suppressive, and neutral to take-all disease of wheat, as well as during crop rotation. Furthermore, the various soils could also be differentiated on the basis of the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Soils conducive and neutral to take-all disease of wheat were characterised by high concentrations of manganese, as well as elevated concentrations of monounsaturated fatty acids, terminally branched saturated fatty acids, and polyunsaturated fatty acids which were indicative of Gram-negative bacteria, Gram-positive bacteria and micro eukaryotes (primarily fungi), respectively. These soils were also characterised by low concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as low soil pH. Soil suppressive to take-all disease of wheat was characterised by the elevated levels of estimated of biomass and elevated concentrations of normal saturated fatty acids, which is ubiquitous to micro-organisms. The concentration of normal saturated fatty acids in suppressive soils is indicative of a low structural diversity. This soil was also characterised by high concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as elevated soil pH. The relationship between PLFAs and agricultural soils was investigated using principal component analysis (PCA), redundancy analysis (RDA) and discriminant analysis (DA). Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Hierarchical cluster analysis of the major phospholipid fatty acid groups indicated that the structural diversity differed significantly between soils conducive, suppressive, and neutral to take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. The results indicate that the microbial community functionality as well as the microbial community structure was significantly influenced by the presence of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici, and that the characterisation of microbial functional and structural diversity by analysis of community level physiological profiles and phospholipid fatty acid analysis, respectively, could be successfully used as an assessment criteria for the evaluation of agricultural soils conducive, suppressive, and neutral to take-all disease of wheat, as well as in crop rotation systems. This methodology might be of significant value in assisting in the management and evaluation of agricultural soils subject to the prevalence of other soilborne diseases. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2004.
8

Tracking Carbon Flow during Methane Oxidation into Methanotrophs using 13C-PLFA Labeling in Pulsing Freshwater Wetlands

Roy Chowdhury, Taniya 18 July 2012 (has links)
No description available.

Page generated in 0.3831 seconds