• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 22
  • 12
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Psychometric Evaluation of Script Concordance Tests for Measuring Clinical Reasoning

Wilson, Adam Benjamin 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Purpose: Script concordance tests (SCTs) are assessments purported to measure clinical data interpretation. The aims of this research were to (1) test the psychometric properties of SCT items, (2) directly examine the construct validity of SCTs, and (3) explore the concurrent validity of six SCT scoring methods while also considering validity at the item difficulty and item type levels. Methods: SCT scores from a problem solving SCT (SCT-PS; n=522) and emergency medicine SCT (SCT-EM; n=1040) were used to investigate the aims of this research. An item analysis was conducted to optimize the SCT datasets, to categorize items into levels of difficulty and type, and to test for gender biases. A confirmatory factor analysis tested whether SCT scores conformed to a theorized unidimensional factor structure. Exploratory factor analyses examined the effects of six SCT scoring methods on construct validity. The concurrent validity of each scoring method was also tested via a one-way multivariate analysis of variance (MANOVA) and Pearson’s product moment correlations. Repeated measures analysis of variance (ANOVA) and one-way ANOVA tested the discriminatory power of the SCTs according to item difficulty and type. Results: Item analysis identified no gender biases. A combination of moderate model-fit indices and poor factor loadings from the confirmatory factor analysis suggested that the SCTs under investigation did not conform to a unidimensional factor structure. Exploratory factor analyses of six different scoring methods repeatedly revealed weak factor loadings, and extracted factors consistently explained only a small portion of the total variance. Results of the concurrent validity study showed that all six scoring methods discriminated between medical training levels in spite of lower reliability coefficients on 3-point scoring methods. In addition, examinees as MS4s significantly (p<0.001) outperformed their MS2 SCT scores in all difficulty categories. Cross-sectional analysis of SCT-EM data reported significant differences (p<0.001) between experienced EM physicians, EM residents, and MS4s at each level of difficulty. When considering item type, diagnostic and therapeutic items differentiated between all three training levels, while investigational items could not readily distinguish between MS4s and EM residents. Conclusions: The results of this research contest the assertion that SCTs measure a single common construct. These findings raise questions about the latent constructs measured by SCTs and challenge the overall utility of SCT scores. The outcomes of the concurrent validity study provide evidence that multiple scoring methods reasonably differentiate between medical training levels. Concurrent validity was also observed when considering item difficulty and item type.
12

The effect of hypoxia on ER-β expression in the lung and cultured pulmonary artery endothelial cells

Selej, Mona M.A. 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / 17-β estradiol (E2) exerts protective effects in hypoxia-induced pulmonary hypertension (HPH) via endothelial cell estrogen receptor (ER)-dependent mechanisms. However, the effects of hypoxia on ER expression in the pulmonary-right ventricle (RV) axis remain unknown. Based on previous data suggesting a role of ER-β in mediating E2 protection, we hypothesized that hypoxia selectively up-regulates ER-β in the lung and pulmonary endothelial cells. In our Male Sprague-Dawley rat model, chronic hypoxia exposure (10% FiO2) resulted in a robust HPH phenotype associated with significant increases in ER- β but not ER-α protein in the lung via western blotting. More importantly, this hypoxia-induced ER-β increase was not replicated in the RV, left ventricle (LV) or in the liver. Hence, hypoxia-induced ER-β up-regulation appears to be lung-specific. Ex vivo, hypoxia exposure time-dependently up-regulated ER-β but not ER-α in cultured primary rat pulmonary artery endothelial cells (RPAECs) exposed to hypoxia (1% O2) for 4, 24 or 72h. Furthermore, the hypoxia induced ER-β protein abundance, while not accompanied by increases in its own transcript, was associated with ER-β nuclear translocation, suggesting increase in activity as well as post-transcriptional up-regulation of ER-β. Indeed, the requirement for ER-β activation was indicated in hypoxic ER-βKO mice where administration of E2 failed to inhibit hypoxia-induced pro-proliferative ERK1/2 signaling. Interestingly, HIF-1α accumulation was noted in lung tissue of hypoxic ER-βKO mice; consistent with previously reported negative feedback of ER-β on HIF-1α protein and transcriptional activation. In RAPECs, HIF-1 stabilization and overexpression did not replicate the effects of ER- β up-regulation seen in gas hypoxia; suggestive that HIF-1α is not sufficient for ER-β up- regulation. Similarly, HIF-1 inhibition with chetomin did not result in ER-β down-regulation. HIF-1α knockdown in RPAECs in hypoxic conditions is currently being investigated. Hypoxia increases ER- β, but not ER-α in the lung and lung vascular cells. Interpreted in context of beneficial effects of E2 on hypoxic PA and RV remodeling, our data suggest a protective role for ER-β in HPH. The mechanisms by which hypoxia increases ER-β appears to be post-transcriptional and HIF-1α independent. Elucidating hypoxia-related ER-β signaling pathways in PAECs may reveal novel therapeutic targets in HPH.
13

Interactive pattern mining of neuroscience data

Waranashiwar, Shruti Dilip 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Text mining is a process of extraction of knowledge from unstructured text documents. We have huge volumes of text documents in digital form. It is impossible to manually extract knowledge from these vast texts. Hence, text mining is used to find useful information from text through the identification and exploration of interesting patterns. The objective of this thesis in text mining area is to find compact but high quality frequent patterns from text documents related to neuroscience field. We try to prove that interactive sampling algorithm is efficient in terms of time when compared with exhaustive methods like FP Growth using RapidMiner tool. Instead of mining all frequent patterns, all of which may not be interesting to user, interactive method to mine only desired and interesting patterns is far better approach in terms of utilization of resources. This is especially observed with large number of keywords. In interactive patterns mining, a user gives feedback on whether a pattern is interesting or not. Using Markov Chain Monte Carlo (MCMC) sampling method, frequent patterns are generated in an interactive way. Thesis discusses extraction of patterns between the keywords related to some of the common disorders in neuroscience in an interactive way. PubMed database and keywords related to schizophrenia and alcoholism are used as inputs. This thesis reveals many associations between the different terms, which are otherwise difficult to understand by reading articles or journals manually. Graphviz tool is used to visualize associations.
14

Biophysical studies of cholesterol in unsaturated phospholipid model membranes

Williams, Justin A. January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distr ibuted to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. T his research employs model membranes of well - defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega - 3 (n - 3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids . T he m olecular organization of 1 -[ 2 H 31 ]palmitoyl -2- eicosapentaenoylphosphatidylcholine (PEPC - d 31 ) and 1 -[ 2 H 31 ]palmitoyl -2- docosahexaenoylphosphatidylcholine (PDPC -d 31 ) in membran es with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid - state 2 H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n - 3 PUFAs found in fish oil, while PEPC -d 31 and PDPC -d 31 are phospholipids containing the respective PUFAs at the sn - 2 position and a perdeuterated palmitic acid a t the sn - 1 position . Analysis of s pectra recorded as a function of temperature indicate s that in both cases, formation of PUFA - rich (less ordered) and SM - rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infil trate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%) . The implication is that n - 3 PUFA s can incorporate into lipid rafts, which are domains enriched in SM and chol in the plasma membrane, and potentially disrupt the activity of signaling proteins that reside therein. DHA, furthermore, may be the more potent component of fish oil. PUFA - chol interactions were also examined through affinity measurements. A novel method utilizing electron paramagnetic resonance (EPR) was develope d, to monitor the partitioning of a spin - labeled analog of chol , 3β - doxyl - 5α - cholestane (chlstn), between large unilamellar vesicles (LUVs) and met hyl - β - cyclodextrin (mβCD). The EPR spectra for chlstn in the two environments are distinguishable due to the substantial differences in tumbling rates , allowing the population distribution ratio to be determined by spectral simulation. Advantages of this approach include speed of implementation and a vo idance of potential artifact s associated with physical separation of LUV and mβCD . Additionally, in a check of the method, t he relative partition coefficients between lipids measured for the spin label analog agree with values obtained for chol by isothermal titration calorimetry (ITC). Results from LUV with different composition confirmed a hierarchy of decreased sterol affinity for phospholipids with increasing acyl chain unsaturation , PDPC possessing half the affinity of the corresponding monounsaturated phospholipid. Taken together, the results of these studies on model membranes demonstrate the potential for PUFA - driven alteration of the architecture of biomembranes, a mechanism through which human health may be impacted.
15

Návrh procesů v oblasti podpory a péče o zákazníka / Design processes in customer care and support

Müller, Vladimír January 2010 (has links)
The Diploma thesis is engaged in the modelling of business processes, focusing on their design. Especially processes in area of providing support and customer care. The main goal of the thesis is application modelling method for selected business processes in a particular company engaged in telecommunications services. The theoretical part is focused on processes, process management and standards for the business process modelling. In the practical part are then described selected processes related to ABC satellite television services. These processes are designed by selected methodology. Under the proposed processes that take place after activation are calculated costs of operation the process (financial, human resources). These costs are calculated to the time when it is expected to 200,000 customers of ABC satellite television. Summary of costs is in evaluating the proposal.
16

Lysine acetyltransferase Gcn5-B regulates the expression of crucial genes in Toxoplasma and its function is regulated through lysine acetylation

Wang, Jiachen 02 April 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative form of GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). We also demonstrate that GCN5b interacts with AP2-domain proteins, which are plant-like transcription factors in Apicomplexa. The interactions between GCN5b, AP2IX-7, and AP2X-8 were confirmed by reciprocal co-immunoprecipitation and revealed a “core complex” that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the Toxoplasma lytic cycle.
17

Performance analysis of EM-MPM and K-means clustering in 3D ultrasound breast image segmentation

Yang, Huanyi 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammographic density is an important risk factor for breast cancer, detecting and screening at an early stage could help save lives. To analyze breast density distribution, a good segmentation algorithm is needed. In this thesis, we compared two popularly used segmentation algorithms, EM-MPM and K-means Clustering. We applied them on twenty cases of synthetic phantom ultrasound tomography (UST), and nine cases of clinical mammogram and UST images. From the synthetic phantom segmentation comparison we found that EM-MPM performs better than K-means Clustering on segmentation accuracy, because the segmentation result fits the ground truth data very well (with superior Tanimoto Coefficient and Parenchyma Percentage). The EM-MPM is able to use a Bayesian prior assumption, which takes advantage of the 3D structure and finds a better localized segmentation. EM-MPM performs significantly better for the highly dense tissue scattered within low density tissue and for volumes with low contrast between high and low density tissues. For the clinical mammogram, image segmentation comparison shows again that EM-MPM outperforms K-means Clustering since it identifies the dense tissue more clearly and accurately than K-means. The superior EM-MPM results shown in this study presents a promising future application to the density proportion and potential cancer risk evaluation.
18

Step-growth thiol-ene photopolymerization to form degradable, cytocompatible and multi-structural hydrogels

Shih, Han 17 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydrogels prepared from photopolymerization have been used for a variety of tissue engineering and controlled release applications. Polymeric biomaterials with high cytocompatibility, versatile degradation behaviors, and diverse material properties are particularly useful in studying cell fate processes. In recent years, step-growth thiol-ene photochemistry has been utilized to form cytocompatible hydrogels for tissue engineering applications. This radical-mediated gelation scheme utilizes norbornene functionalized multi-arm poly(ethylene glycol) (PEGNB) as the macromer and di-thiol containing molecules as the crosslinkers to form chemically crosslinked hydrogels. While the gelation mechanism was well-described in the literature, the network properties and degradation behaviors of these hydrogels have not been fully characterized. In addition, existing thiol-ene photopolymerizations often used type I photoinitiators in conjunction with an ultraviolet (UV) light source to initiate gelation. The use of cleavage type initiators and UV light often raises biosafety concerns. The first objective of this thesis was to understand the gelation and degradation properties of thiol-ene hydrogels. In this regard, two types of step-growth hydrogels were compared, namely thiol-ene hydrogels and Michael-type addition hydrogels. Between these two step-growth gel systems, it was found that thiol-ene click reactions formed hydrogels with higher crosslinking efficiency. However, thiol-ene hydrogels still contained significant network non-ideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEGNB macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, it was found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network crosslinking. In an attempt to manipulate network crosslinking and degradation rate of thiol-ene hydrogels, different macromer contents and peptide crosslinkers with different amino acid sequences were used. A chymotrypsin-sensitive peptide was also used as part of the hydrogel crosslinkers to render thiol-ene hydrogels enzymatically degradable. The second objective of this thesis was to develop a visible light-mediated thiol-ene hydrogelation scheme using a type II photoinitiator, eosin-Y, as the only photoinitiator. This approach eliminates the incorporation of potentially cytotoxic co-initiator and co-monomer that are typically used with a type II initiator. In addition to investigating the gelation kinetics and properties of thiol-ene hydrogels formed by this new gelation scheme, it was found that the visible light-mediated thiol-ene hydrogels were highly cytocompatible for human mesenchymal stem cells (hMSCs) and pancreatic MIN6 beta-cells. It was also found that eosin-Y could be repeatedly excited for preparing step-growth hydrogels with multilayer structures. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.
19

Serum response factor-dependent regulation of smooth muscle gene transcription

Chen, Meng 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Several common diseases such as atherosclerosis, post-angioplasty restenosis, and graft vasculopathies, are associated with the changes in the structure and function of smooth muscle cells. During the pathogenesis of these diseases, smooth muscle cells have a marked alteration in the expression of many smooth muscle-specific genes and smooth muscle cells undergo a phenotypic switch from the contractile/differentiated status to the proliferative/dedifferentiated one. Serum response factor (SRF) is the major transcription factor that plays an essential role in coordinating a variety of transcriptional events during this phenotypic change. The first goal of my thesis studies is to determine how SRF regulates the expression of smooth muscle myosin light chain kinase (smMLCK) to mediate changes in contractility. Using a combination of transgenic reporter mouse and knockout mouse models I demonstrated that a CArG element in intron 15 of the mylk1 gene is necessary for maximal transcription of smMLCK. SRF binding to this CArG element modulates the expression of smMLCK to control smooth muscle contractility. A second goal of my thesis work is to determine how SRF coordinates the activity of chromatin remodeling enzymes to control expression of microRNAs that regulate the phenotypes of smooth muscle cells. Using both mouse knockout models and in vitro studies in cultured smooth muscle cells I showed how SRF acts together with Brg1-containing chromatin remodeling complexes to regulate expression of microRNAs-143, 145, 133a and 133b. Moreover, I found that SRF transcription cofactor myocardin acts together with SRF to regulate expression of microRNAs-143 and 145 but not microRNAs-133a and 133b. SRF can, thus, further modulate gene expression through post-transcriptional mechanisms via changes in microRNA levels. Overall my research demonstrates that through direct interaction with a CArG box in the mylk1 gene, SRF is important for regulating expression of smMLCK to control smooth muscle contractility. Additionally, SRF is able to harness epigenetic mechanisms to modulate expression of smooth muscle contractile protein genes directly and indirectly via changes in microRNA expression. Together these mechanisms permit SRF to coordinate the complex phenotypic changes that occur in smooth muscle cells.
20

In Vitro and In Silico Analysis of Osteoclastogenesis in Response to Inhibition of De-phosphorylation of EIF2alpha by Salubrinal and Guanabenz

Tanjung, Nancy Giovanni January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / An excess of bone resorption over bone formation leads to osteoporosis, resulting in a reduction of bone mass and an increase in the risk of bone fracture. Anabolic and anti-resorptive drugs are currently available for treatment, however, none of these drugs are able to both promote osteoblastogenesis and reduce osteoclastogenesis. This thesis focused on the role of eukaryotic translation initiation factor 2 alpha (eIF2alpha), which regulates efficiency of translational initiation. The elevation of phosphorylated eIF2alpha was reported to stimulate osteoblastogenesis, but its effects on osteoclastogenesis have not been well understood. Using synthetic chemical agents such as salubrinal and guanabenz that are known to inhibit the de-phosphorylation of eIF2alpha, the role of phosphorylation of eIF2alpha in osteoclastogenesis was investigated in this thesis. The questions addressed herein were: Does the elevation of phosphorylated eIF2alpha (p-eIF2alpha) by salubrinal and guanabenz alter osteoclastogenesis? If so, what regulatory mechanism mediates the process? It was hypothesized that p-eIF2alpha could attenuate the development of osteoclast by regulating the transcription factor(s) amd microRNA(s) involved in osteoclastogenesis. To test this hypothesis, we conducted in vitro and in silico analysis of the responses of RAW 264.7 pre-osteoclast cells to salubrinal and guanabenz. First, the in vitro results revealed that the elevated level of phosphorylated eIF2alpha inhibited the proliferation, differentiation, and maturation of RAW264.7 cells and downregulated the expression of NFATc1, a master transcription factor of osteoclastogenesis. Silencing eIF2alpha by RNA interference suppressed the downregulation of NFATc1, suggesting the involvement of eIF2alpha in regulation of NFATc1. Second, the in silico results using genome-wide expression data and custom-made Matlab programs predicted a set of stimulatory and inhibitory regulator genes as well as microRNAs, which were potentially involved in the regulation of NFATc1. RNA interference experiments indicated that the genes such as Zfyve21 and Ddit4 were primary candidates as an inhibitor of NFATc1. In summary, the results showed that the elevation of p-eIF2alpha by salubrinal and guanabenz leads to attenuation of osteoclastogenesis through the downregulation of NFATc1. The regulatory mechanism is mediated by eIF2alpha signaling, but other signaling pathways are likely to be involved. Together with the previous data showing the stimulatory role of p-eIF2alpha in osteoblastogenesis, the results herein suggest that eIF2alpha-mediated signaling could provide a novel therapeutic target for treatment of osteoporosis by promoting bone formation and reducing bone resorption.

Page generated in 0.0889 seconds