• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CO<sub>2</sub> Separation and Regeneration Study From Power Plant Flue Gases With Reclaimed Mg(OH)<sub>2</sub>

Jung, Kyung Sook 27 September 2005 (has links)
No description available.
2

Early stage sintering and PLAL fragmentation of MgO powders

Chen, Pei-Ru 04 July 2012 (has links)
The specific surface area reduction and pore size distribution coupled with N2 adsorption-desorption hysteresis isotherm were studied in the temperature range of 1400-1550¢J for periclase MgO powder having 0.1£gm in size and with face-centered cubic structure. The apparent activation energy of such a rapid coarsening-coalescence process for MgO powder was estimated as 181¡Ó3kJ/mol. The minimum temperature for sintering/coarsening/coalescence of submicron MgO particles was estimated to be near 1300¢J based on the extrapolation of steady specific surface area reduction rates to zero. Pulsed laser ablation (PLA) of periclase MgO powders in water was conducted under Q-switch mode and specified water height and water depth (10 mm) for an accumulation time of 5 and 20 minutes at 10 Hz. Such a PLA process has successfully synthesized nanosized and protonated MgO particles from Mg(OH)2 and lamellar precusors, implying the three phases may co-exist at high pressure and temperature conditions upon dynamic shock loading. A significant internal compressive stress up to 10 GPa was built up for the MgO but not the readily relaxed Mg(OH)2 nanocondensates. The lamellae-derived Mg(OH)2 tended to undergo a dehydroxylation process to become MgO following a specific crystallographic relationship, i.e. lamellar basal layer parallel to Mg(OH)2(0001) and MgO(111). The minimum band gap of the colloidal solution of MgO/Mg(OH)2/lamellae was lowered to ca. 5.2eV after the PLA process.
3

Synthesis of one-dimensional nanostructure materials

Zhou, Zhengzhi 23 June 2009 (has links)
Understanding the fundamentals of the growth of nanostructures is key to controlling their size and morphology. This thesis investigated the supersaturation effect as well as other effects on the growth of two one-dimensional nanomaterials - Magnesium hydroxide sulfate hydrate(MHSH) nanobelt and ZnO nanorod. It was found that the supersaturation for the growth of 1D nanomaterial had to be controlled at low level and it could be controlled through sparingly soluble carbonate salts. To examine the supersaturation effect on one-dimensional nanostructure growth, this study developed a quantitative kinetic model was developed to describe the one-dimensional nanostructure growth. The qualitative investigation and the quantitative model should provide more insight to the processes and some guide-lines for one-dimensional nanostructure growth in the future. This thesis also examines other factors such as agitation and temperature. Some other process parameters can have a significant effect on the growth process. The Zn(NO3)2 and HMT system was used as a model system to demonstrate that agitation had dramatic effects on the final morphology of the nanostructure. Spherical morphology could be obtained through mixing the reaction solution. The building blocks of the nanospheres were similar to those forming the nanorods. Thus, the spherical morphology was believed to result from the breakdown of the free diffusion of building blocks to the growing nanocrystal surface.
4

Design and operation of multistage flash (MSF) desalination : advanced control strategies and impact of fouling : design operation and control of multistage flash desalination processes : dynamic modelling of fouling, effect of non-condensable gases on venting system design and implementation of GMC and fuzzy control

Alsadaie, Salih M. M. January 2017 (has links)
The rapid increase in the demand on fresh water due the increase in the world population and scarcity of natural water puts more stress on the desalination industrial sector to install more desalination plants around the world. Among these desalination plants, multistage flash desalination process (MSF) is considered to be the most reliable technique of producing potable water from saline water. In recent years, however, the MSF process is confronting many problems to cut off the cost and increase its performance. Among these problems are the non-condensable gases (NCGs) and the accumulation of fouling which they work as heat insulation materials. As a result, the MSF pumps and the heat transfer equipment are overdesigned and consequently increase the capital cost and decrease the performance of the plants. Moreover, improved process control is a cost effective approach to energy conservation and increased process profitability. Thus, this study is motivated by the real absence of detailed kinetic fouling model and implementation of advance process control (APC). To accomplish the above tasks, commercial modelling tools can be utilized to model and simulate MSF process taking into account the NCGs and fouling effect, and optimum control strategy. In this research, gPROMS (general PROcess Modeling System) model builder has been used to develop the MSF process model. First, a dynamic mathematical model of MSF is developed based on the basic laws of mass balance, energy balance and heat transfer. Physical and thermodynamic properties of brine, distillate and water vapour are included to support the model. The model simulation results are validated against actual plant data published in the literature and good agreement with these data is obtained. Second, the design of venting system in MSF plant and the effect of NCGs on the overall heat transfer coefficient (OHTC) are studied. The release rate of NCGs is studied using Henry’s law and the locations of venting points are optimised. The results reveal that high concentration of NCGs heavily affects the OHTC. Furthermore, advance control strategy namely: generic model control (GMC) is designed and introduced to the MSF process to control and track the set points of the two most important variables in the MSF plant; namely the Top Brine Temperature (TBT) which is the output temperature of the brine heater and the Brine Level (BL) in the last stage. The results are compared to conventional Proportional Integral Derivative Controller (PID) and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system. In addition, a new control strategy called hybrid Fuzzy-GMC is developed and implemented to control the same aforementioned loops. Its results reveal that the new control outperforms the pure GMC in some areas. Finally, a dynamic fouling model is developed and incorporated into the MSF dynamic process model to predict fouling at high temperature and high velocity. The proposed dynamic model considers the attachment and removal mechanisms of calcium carbonate and magnesium hydroxide with more relaxation of the assumptions. Since the MSF plant stages work as a series of heat exchangers, there is a continuous change of temperature, heat flux and salinity of the seawater. The proposed model predicts the behaviour of fouling based on the physical and thermal conditions of every single stage of the plant.
5

Design and Operation of Multistage Flash (MSF) Desalination: Advanced Control Strategies and Impact of Fouling. Design operation and control of multistage flash desalination processes: dynamic modelling of fouling, effect of non-condensable gases on venting system design and implementation of GMC and fuzzy control

Alsadaie, Salih M.M. January 2017 (has links)
The rapid increase in the demand on fresh water due the increase in the world population and scarcity of natural water puts more stress on the desalination industrial sector to install more desalination plants around the world. Among these desalination plants, multistage flash desalination process (MSF) is considered to be the most reliable technique of producing potable water from saline water. In recent years, however, the MSF process is confronting many problems to cut off the cost and increase its performance. Among these problems are the non-condensable gases (NCGs) and the accumulation of fouling which they work as heat insulation materials. As a result, the MSF pumps and the heat transfer equipment are overdesigned and consequently increase the capital cost and decrease the performance of the plants. Moreover, improved process control is a cost effective approach to energy conservation and increased process profitability. Thus, this study is motivated by the real absence of detailed kinetic fouling model and implementation of advance process control (APC). To accomplish the above tasks, commercial modelling tools can be utilized to model and simulate MSF process taking into account the NCGs and fouling effect, and optimum control strategy. In this research, gPROMS (general PROcess Modeling System) model builder has been used to develop the MSF process model. First, a dynamic mathematical model of MSF is developed based on the basic laws of mass balance, energy balance and heat transfer. Physical and thermodynamic properties of brine, distillate and water vapour are included to support the model. The model simulation results are validated against actual plant data published in the literature and good agreement with these data is obtained. Second, the design of venting system in MSF plant and the effect of NCGs on the overall heat transfer coefficient (OHTC) are studied. The release rate of NCGs is studied using Henry’s law and the locations of venting points are optimised. The results reveal that high concentration of NCGs heavily affects the OHTC. Furthermore, advance control strategy namely: generic model control (GMC) is designed and introduced to the MSF process to control and track the set points of the two most important variables in the MSF plant; namely the Top Brine Temperature (TBT) which is the output temperature of the brine heater and the Brine Level (BL) in the last stage. The results are compared to conventional Proportional Integral Derivative Controller (PID) and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system. In addition, a new control strategy called hybrid Fuzzy-GMC is developed and implemented to control the same aforementioned loops. Its results reveal that the new control outperforms the pure GMC in some areas. Finally, a dynamic fouling model is developed and incorporated into the MSF dynamic process model to predict fouling at high temperature and high velocity. The proposed dynamic model considers the attachment and removal mechanisms of calcium carbonate and magnesium hydroxide with more relaxation of the assumptions. Since the MSF plant stages work as a series of heat exchangers, there is a continuous change of temperature, heat flux and salinity of the seawater. The proposed model predicts the behaviour of fouling based on the physical and thermal conditions of every single stage of the plant.

Page generated in 0.0182 seconds