1 |
Cadmium Free Buffer Layers and the Influence of their Material Properties on the Performance of Cu(In,Ga)Se2 Solar CellsHultqvist, Adam January 2010 (has links)
CdS is conventionally used as a buffer layer in Cu(In,Ga)Se2, CIGS, solar cells. The aim of this thesis is to substitute CdS with cadmium-free, more transparent and environmentally benign alternative buffer layers and to analyze how the material properties of alternative layers affect the solar cell performance. The alternative buffer layers have been deposited using Atomic Layer Deposition, ALD. A theoretical explanation for the success of CdS is that its conduction band, Ec, forms a small positive offset with that of CIGS. In one of the studies in this thesis the theory is tested experimentally by changing both the Ec position of the CIGS and of Zn(O,S) buffer layers through changing their gallium and sulfur contents respectively. Surprisingly, the top performing solar cells for all gallium contents have Zn(O,S) buffer layers with the same sulfur content and properties in spite of predicted unfavorable Ec offsets. An explanation is proposed based on observed non-homogenous composition in the buffer layer. This thesis also shows that the solar cell performance is strongly related to the resistivity of alternative buffer layers made of (Zn,Mg)O. A tentative explanation is that a high resistivity reduces the influence of shunt paths at the buffer layer/absorber interface. For devices in operation however, it seems beneficial to induce persistent photoconductivity, by light soaking, which can reduce the effective Ec barrier at the interface and thereby improve the fill factor of the solar cells. Zn-Sn-O is introduced as a new buffer layer in this thesis. The initial studies show that solar cells with Zn-Sn-O buffer layers have comparable performance to the CdS reference devices. While an intrinsic ZnO layer is required for a high reproducibility and performance of solar cells with CdS buffer layers it is shown in this thesis that it can be thinned if Zn(O,S) or omitted if (Zn,Mg)O buffer layers are used instead. As a result, a top conversion efficiency of 18.1 % was achieved with an (Zn,Mg)O buffer layer, a record for a cadmium and sulfur free CIGS solar cell. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 717
|
2 |
Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar CellsPlatzer-Björkman, Charlotte January 2006 (has links)
Thin-film solar cells based on Cu(In,Ga)Se2 contain a thin buffer layer of CdS in their standard configuration. In order to avoid cadmium in the device for environmental reasons, Cd-free alternatives are investigated. In this thesis, ZnO-based films, containing Mg or S, grown by atomic layer deposition (ALD), are shown to be viable alternatives to CdS. The CdS is an n-type semiconductor, which together with the n-type ZnO top-contact layers form the pn-junction with the p-type Cu(In,Ga)Se2. From device modeling it is known that a buffer layer conduction band (CB) position of 0-0.4 eV above that of the Cu(In,Ga)Se2 layer is consistent with high photovoltaic performance. For the Cu(In,Ga)Se2/ZnO interface this position is measured by photoelectron spectroscopy and optical methods to –0.2 eV, resulting in increased interface recombination. By including sulfur into ZnO, a favorable CB position to Cu(In,Ga)Se2 can be obtained for appropriate sulfur contents, and device efficiencies of up to 16.4% are demonstrated in this work. From theoretical calculations and photoelectron spectroscopy measurements, the shift in the valence and conduction bands of Zn(O,S) are shown to be non-linear with respect to the sulfur content, resulting in a large band gap bowing. ALD is a suitable technique for buffer layer deposition since conformal coverage can be obtained even for very thin films and at low deposition temperatures. However, deposition of Zn(O,S) is shown to deviate from an ideal ALD process with much larger sulfur content in the films than expected from the precursor pulsing ratios and with a clear increase of sulfur towards the Cu(In,Ga)Se2 layer. For (Zn,Mg)O, single-phase ZnO-type films are obtained for Mg/(Zn+Mg) < 0.2. In this region, the band gap increases almost linearly with the Mg content resulting in an improved CB alignment at the heterojunction interface with Cu(In,Ga)Se2 and high device efficiencies of up to 14.1%.
|
3 |
Novel solid base catalysts for Michael additionsLi, Zhijian 05 September 2005 (has links)
Im Gegensatz zu „festen Säuren“ sind „feste Basen“ wesentlich seltener Untersuchungsgegenstand in ihrer Anwendung als Katalysatoren in der heterogenen Katalyse. In der vorliegenden Promotionsarbeit wurden entgegen diesem Trend die Herstellung, Charakterisierung und Anwendung basischer Oxide sowie modifizierter Oxide in ihrer Eignung als feste Basen in der Katalyse untersucht. Zu diesen Katalysatoren gehören MgO, hergestellt nach unterschiedlichen Methoden, Kalium modifiziertes ZrO2, calcinierte Mg-Al Hydrotalcite und ein neuartiges Katalysatorsystem auf der Basis von Mg(O,F)-Kompositionen, die zum ersten Mal nach einem Sol-Gel-Fluorierungsverfahren hergestellt wurden. Die Katalysatoren wurden mittels N2 Adsorptions/Desorptionsuntersuchungen (BET), XRD, FTIR, XPS, TG-DTA-DTG und MAS NMR untersucht. Die Säure-Basen-Eigenschaften der Katalysatoren wurden durch TPD, FTIR Spektroskopie und Mikrokalorimetrie charakterisiert und mit den katalytischen Eigenschaften korreliert. Calcinierte Mg-Al Hydrotalcite und Mg(O,F) waren in diesem Zusammenhang am stärksten aktiv und auch selektiv wie für die Flüssigphasenreaktion der Michael-Addition von CH aciden Verbindungen mit Methylvinylketon gezeigt wurde. / In contrast to solid acid catalysts, much fewer efforts have been made to study solid base catalysts. In this thesis, preparation, characterization and application of oxides and modified oxide as solid base catalysts were studied. The catalysts include MgO prepared by different methods, potassium-modified ZrO2, calcined Mg-Al hydrotalcites, and a novel catalyst system Mg(O,F), which was prepared by sol-gel method for the first time. The catalysts were studied by N2 adsorption/desorption measurement, XRD, FTIR, XPS, TG-DTA-DTG and NMR. Acid-base properties of the catalysts were investigated by TPD, FTIR spectroscopy and microcalorimetry to correlate with the catalytic behavior. Calcined Mg-Al hydrotalcite and Mg(O,F) are found to be highly active and selective catalysts for liquid-phase Michael additions of CH-acid compounds with methyl vinyl ketone.
|
Page generated in 0.0264 seconds