• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 14
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Establishing a Baseline for Kinetic and Thermodynamic Origins of Vital Effects: Toward an Understanding of Factors Controlling Mg Signatures in Calcite

Stephenson, Allison Elaine 11 June 2009 (has links)
Elemental proxy models for temperature and seawater chemistry begin by assuming compositional signatures reflect environmental conditions of formation. The Mg/Ca ratio in marine cements and calcified skeletal structures is a widely used proxy for reconstructing past earth environments. Many studies have positively correlated Mg content in biogenic carbonates with temperature, but it is difficult to differentiate the effect of temperature from other environmental factors. Supersaturation, precipitation rate, salinity, pH, and ion concentration have also been proposed as drivers of Mg/Ca. Furthermore, it is difficult to distinguish environmental signatures from the “vital effect,” or the influences superimposed by the growth needs and metabolic activities of the organism. To construct viable paleoenvironmental proxies from biomineral compositions, we must resolve the effects of environmental conditions from the vital effects of the organism by first understanding the underlying thermodynamic and kinetic mechanisms for incorporating minor and trace elements. Using in situ Atomic Force Microscopy, controlled solution chemistries, and different ion microprobe techniques, this dissertation investigates the kinetics and thermodynamics of calcite growth to establish an inorganic baseline for uptake of Mg. I use this information to quantify the enhancement in Mg/Ca due to the presence of hydrophilic 27-mer peptides, demonstrating a possible origin of vital effects. Likewise I measure the effect of ionic strength on signatures and find that growth rate and background electrolyte proved more important than salinity in determining Mg contents. The findings contribute to the ongoing discussion regarding the relative importance of unique seawater parameters in determining Mg/Ca in calcite. Mg contents are significantly enhanced by biomolecules relative to the amounts attributed to temperature differences, while Mg content is less influenced by salinity variation than by changing supersaturation or driving force. In addition to sorting out the relative importance of environmental factors, our results begin to address the interplay of these different parameters in concert, and at different scales. At sites of calcification, the local biochemistry within an organism may shift in response to more saline waters. At a geological scale, interpreting past temperatures and particularly those of the Last Glacial Maximum depends on our ability to sort out and account for this interplay of salinity and temperature on Mg/Ca. Processes underlying inorganic and biogenic carbonate mineralization and interpretations of their formation environments are better understood by examining the influence of environmental parameters and biomolecular chemistry on kinetics and thermodynamics of calcite growth and stability. / Ph. D.
2

Study of Paleo-Hydrological Conditions in Mid- to Downstream Area of the Kuroshio since 26 ka by Referring to Records of Core GH08-2004

Liu, Chin-Hsing 16 February 2012 (has links)
The Kuroshio, one of the most important western boundary currents of world, controls modern hydrology conditions of the East China Sea (ECS) and carries warm and saline water to high latitudes. Previous researches mentioned that the Kuroshio might change its flow path and volume in the ECS by East Asia monsoon (EAM), Equatorial climate conditions, or global sea level change during glacials. However, shifting or not of the Kuroshio out of the Okinawa Trough during Last Glacial Maximum (LGM) is still in debate. In this study, records derived from multi-proxies, include of Mg/Ca-based paleotemperatures and stable isotopes and foraminiferal census data, of core GH08-2004 was conducted for comparing with records derived from core MD012404 to understand the possible changes of the Kuroshio in the ESC since 26 ka. Our comparing results reveal that the surface hydrological environments have no obvious difference between eastern and western sides of the Ryukyu Arc and imply that the Kuroshio might not shifted outside of the OT during LGM. Otherwise, our reconstructed temperatures, oxygen isotopes and foraminiferal assemblages infer that the flowing volume of the Kuroshio was gradually increased since 19 ka associated with rising sea level. Thus we believe that emerged terrain caused by shallow sea level may be an important factor controlling the flowing path of the Kuroshio. In this study, differences of paleotemperatures and oxygen isotopes between G. ruber and N. dutertrei, surface and subsurface dweller, were decreased at the Holocene, whereas the delta values of carbon isotopes were larger meanwhile. This descrapncy implies that the East Asian winter and summer monsoons were enhanced synchronously.
3

Benthic Foraminifera Assembledges of Gutingken Formation at Shoushan, Kaohsiung

Hsiung, Kan-hsi 27 August 2005 (has links)
The samples in this study were collected from the drilling cores W-2 and S-4 obtained from the slope-stability monitoring project inside the campus of NSYSU. The Sheng-Li (SL) core was drilled for groundwater monitoring project in the northern of Kaohsiung city. The mudstone sections in these three cores were sampled to reconstruct the sedimental history of the southwestern Taiwan. This study mainly contains 3 parts: firstly we dated the downcore records based on nannobiostratigraphy. Secondly, we analyzed the benthic foraminiferal assemblages in sedimentary sequences. Finally we chose specific benthic species and analyzed the shell trace metals, especially Mg/Ca and Sr/Ca ratio with an ICP-MS. Overall the mudstone sections analyzed in this study fall in the biostratigraphic range of small Gephyrocapsa Subchron, which spreads within 1242ka~1031ka according to the previous report. The age range in W-2 was further constrained within 1186ka~1065ka based on the oxygen isotope stratigraphy (Tseng, 2004). There are four dominant benthic species, including Bulimina spp., Uvigerina spp., Brizalina tainanesis and Siphogenerina raphanus in Cores W-2 and S-4. There are five dominant benthic species, including Brizalina spp., Pseudorotalia spp., Siphogenerina raphanus, Amphicoryna scalaris and Brizalina alata in Core SL. The benthic foraminiferal shell Mg/Ca ratios obtained from Core W-2 indicate the bottom water temperature are between 6 - 12¢J, which reflects the paleo water depth had varied between 300 - 700m. It also indicates that strata were uplifted and the deposition depth become shallow.
4

Origin and Geochemistry of Modern Bahamian Ooids

Duguid, SARAH 27 January 2009 (has links)
The Bahamian Archipelago is one of the few locations in the world where ooid formation is actively occurring. Ooid cortices from six locations in the region were incrementally dissolved and analyzed for 14C, δ18O, δ13C, Mg/Ca and Sr/Ca ratios. Ooids were examined under SEM after each step in the incremental analyses to characterize the nature of dissolution. Radiocarbon dating indicates that surface ooids began forming across the Archipelago between 1000 and 2800 yr BP and continue to form today. The ooids have the same pattern of microboring alteration across the region. The surface and outer cortex of the ooids are punctuated with unfilled microborings, whereas the inner cortex contains two morphologies of aragonite cement filling the microborings. The two morphologies of cement form in association with two different species of cyanobacteria, one is Solentia sp. the other is interpreted to be Hyella sp.. The chemistry of ooids from across the region is remarkably similar. δ18O and δ13C values for all samples vary directly, having a slope of approximately 1. The outer cortex has low δ18O and δ13C values of -3.4‰ and 0.2‰ respectively, whereas the δ18O and δ13C values of the inner cortex are high with values of 1.9‰ and 6.8‰ respectively. The presence of aragonite cement in microborings in the inner cortex increases the overall isotopic composition of both oxygen and carbon in the ooid, causing it to appear close to equilibrium with seawater. The isotopic variation in δ18O and δ13C within the cortex can be characterized as a mixing line between the low values in the unaltered ooid laminae and the aragonite cement in the microborings. The most exterior portion of the ooid has very high Mg/Ca values and is interpreted as an amorphous calcium carbonate (ACC) coating. There are two other phases in the cortex, both being aragonite. The outer cortex has a higher Mg/Ca ratio and lower Sr/Ca ratio than the inner cortex. This difference in chemistry is a result of the presence of aragonite cement in the inner cortex. Stable isotopic and trace element results coupled with SEM investigations indicate that microbes do not play a role in ooid formation, but instead alter the texture and chemistry of ooids after they have formed. This alteration occurs throughout the entire shoal region. A new model of ooid formation is proposed whereby a veneer of ACC precipitates on an ooid while it is at the sediment-water interface (the active phase). This veneer of ACC later recrystallizes to aragonite needles, possibly nucleating on organic material and a new cortex layer is formed. Observations from this study lead to a deeper understanding of the chemical processes involved in ooid genesis, which allows for a better understanding of paleoenvironments hosting ooid formation. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2009-01-27 13:29:42.765
5

Environmental and Growth Rate Effects on Trace Element Incorporation to Calcite and Aragonite: An Experimental Study

Weremeichik, Jeremy M 07 May 2016 (has links)
The subsumed work of this dissertation is comprised of three independent but interrelated studies which seek to further the understanding of processes which govern the coprecipitation of trace elements with calcite and aragonite minerals. These studies investigate the effects of: 1) pressure on crystal morphology and trace element incorporation to aragonite; 2) growth rate on uranium partitioning between calcite and fluid; 3) aqueous Mg/Ca on the magnesium partitioning to low-magnesium calcite. The importance of this work is to determine how the environment of formation and growth rate influences the geochemistry of CaCO3 in order to improve existing paleoproxies and develop new ones. In the first study a series of experiments were conducted at 1, 25, 75, 100, and 345 bars of nitrogen – this range covers pressures at the oceanic floor. Aragonite precipitation was induced by the one-time addition of a Na2CO3 solution to an artificial seawater. Results suggest that oceanic floor pressures could affect the crystallization of CaCO3 by altering mineralogical composition and aragonite crystal size. In the second study calcite crystallized from NH4Cl-CaCl2-U solution by diffusion of CO2. The calcite growth rate was monitored by sequential spiking of the calcite-precipitating fluids with REE dopants. The resulting crystals were analyzed using Secondary Ion Mass Spectrometry (SIMS). Results showed that the partitioning of uranium increases with increasing growth rate. Growth entrapment model (GEM) and unified uptake kinetics model (UUKM) explain the obtained data.In the third study CaCO3 precipitated in NaCl solution by continuous addition of CaCl2, MgCl2, and either Na2CO3 or NaHCO3. The Mg/Ca of the fluid was adjusted in an attempt to produce calcite where Mg/Ca would match Mg/Ca in foraminifera shells. It was observed that multiple CaCO3 polymorphs precipitated from fluids at high pH (Na2CO3 doping experiments). This result underscores the potential control of pH and/or supersaturation state on CaCO3 polymorph precipitated from low Mg/Ca solutions. Calcite was the only mineral crystallized at low pH (NaHCO3 doping experiments). It was determined that Mg partition coefficient between calcite and fluid (KMg) negatively correlates with Mg/Ca(Fluid) when it exceeds 0.5 mol/mol; no systematic correlation was observed when 0.05< Mg/Ca(Fluid)<0.5 mol/mol.
6

Diversité cryptique du zooplancton carbonaté et réponse aux changements globaux du pléistocène à l'anthropocène / Carbonate zooplankton cryptic diversity and response to climate changes from pleistocene to anthropocène

Regoli, Fabienne 10 July 2014 (has links)
La dynamique de la thermocline Equatoriale Pacifique est en grande partie modulée par des phénomènes climatiques majeurs tels que l'ENSO ou la mousson indo asiatique. Nous utilisons des fossiles de deux morphotypes de l'espèce de foraminifères planctoniques Globigerinoides ruber comme traceurs de la stratification à la bordure Sud du Pacifique Ouest Equatorial, afin de retracer la dynamique climatique de cette région durant les derniers 800 000 ans. Nos résultats mettent en évidence un battement de la thermocline Pacifique en réponse aux variations Glaciaire /Interglaciaire, en relation avec les hautes latitudes. Lors des périodes glaciaires, la gyre subtropicale Sud renforcée permet le transport d'eaux froides venues de l'Antarctique vers le Pacifique Ouest. Ce mécanisme s'est progressivement intensifié depuis 800 000 ans en réponse à l'augmentation de l'amplitude de l'obliquité de l'orbite terrestre. L'étude morphologique des deux morphotypes de Globigerinoides ruber en réponse aux changements climatiques des derniers 800 000 ans, montre que la forme des tests est influencée par les changements environnementaux à l'échelle Glaciaire/Interglaciaire. Ces résultats suggèrent également que ces deux populations ont des exigences écologiques distinctes, permettant de les utiliser comme proxy de la stratification. La calibration mono-morphotypique pour les paléotempératures issues du Mg/Ca a également montré qu'il ne semble pas y avoir de différence de thermodépendance du Magnésium entre ces deux populations. / The Equatorial West Pacific thermocline dynamic is strongly modulated by climatic phenomenon as the ENSO and the Indo Asiatic monsoon. Here we use fossils of two morphotypes of the same planktonic foraminifera species, Globigerinoides ruber, from the Southern edge of the Western Equatorial Pacific as proxy of paleostratification, in order to track climate changes since the last 800 000 years. Our results show a regular beating of the Equatorial Pacific thermocline in response to Glacial/ Interglacial changes connected to the high latitudes. During glacials, the reinforced South subtropical gyre increases the advection of cold waters from the Antarctic to the West Pacific. This mechanism was progressively intensified by the increasing obliquity amplitude since 800 000 years. The morphometric study of the two morphotypes of Globigerinoides ruber indicates that the test shape responses to environmental changes at Glacial/Interglacial time scale. Furthermore these results suggest that those two populations have distinct environmental requirements, allowing to uses them as proxy of stratification. The mono-morphotypic calibration for Mg/Ca derived-paleotemperatures indicates that there is no specific thermodependance of magnesium between the two morphotypes.
7

Paleoceanografia do sistema de ressurgência de Cabo Frio (RJ) nos últimos 12.000 anos inferida por geoquímica e assembleias de foraminíferos planctônicos

Lessa, Douglas Villela de Oliveira 19 September 2016 (has links)
Submitted by Biblioteca de Pós-Graduação em Geoquímica BGQ (bgq@ndc.uff.br) on 2016-09-19T17:07:03Z No. of bitstreams: 1 Tese UFF-UPMC Douglas Lessa.pdf: 6010651 bytes, checksum: 86b3d1d49b00abc23751b8883b42dfe0 (MD5) / Made available in DSpace on 2016-09-19T17:07:03Z (GMT). No. of bitstreams: 1 Tese UFF-UPMC Douglas Lessa.pdf: 6010651 bytes, checksum: 86b3d1d49b00abc23751b8883b42dfe0 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Universidade Federal Fluminense. Instituto de Química. Programa de Pós-Graduação em Geociências - Geoquímica. Niterói, RJ / A presente tese teve o objetivo de reconstruir a paleoceanografia do Sistema de Ressurgência de Cabo Frio (SRCF) nos últimos 12.000 anos através da utilização de proxies ecológicos (comparação entre as assembleias do SRCF com as assembleias das áreas adjacentes com diferentes feições oceanográficas) e geoquímicos de foraminíferos planctônicos, além de obter maior conhecimento sobre a distribuição das espécies sob diferentes configurações oceanográficas, e avaliar e aplicar a recente metodologia de ablação a laser + ICP-MS para análises elementares em carbonatos de foraminíferos. Para isso, 34 topos de box-cores englobando o SRCF e as áreas adjacentes nas bacias de Santos e Campos e dois testemunhos a gravidade foram usados. O agrupamento das assembleias na Margem Continental do Rio de Janeiro (MCRJ) indicou a ocorrência de quatro principais biofáciess espacialmente bem-separadas: biofácies A - talude da bacia de Campos (contribuição de espécies tropicais e subtropicais caracterizando a frente da Corrente do Brasil, CB), biofácies B - bacia de Santos (maiores contribuições de espécies relacionadas à produtividade, caracterizando sinal de mistura de massas de água costeiras produtivas e oceânicas oligotróficas), biofácies C – setor norte do SRCF (contribuições de G. ruber e Globigerina bulloides, caracterizando ambiente de ressurgência com frequentes atenuações por águas quentes) e a biofácies D – setor sul do SRCF (contribuição de espécies indicadoras de águas frias e produtivas, caracterizando uma configuração influenciada pela ressurgência Ekman). Além disso, a distribuição espacial de Globoturborotalita rubescens revelou preferencia desta espécie por águas de plataforma continental e Globigerinella calida sendo associada a pós-ressurgência. Os testemunhos CF10-01B (mais distante da costa) e CF10-09A (mais próximo da costa) cobrem os últimos 11,5 e 7,1 ka cal, respectivamente sendo o primeiro mais influenciado pela Corrente do Brasil, expressando um sinal mais fraco da ressurgência que o segundo. No testemunho CF10-01B, o 18O de G. ruber foi mais variável que o 18O de G. bulloides apresentando dois períodos de diminuição após 9,0 ka cal AP e após 4,0 ka cal AP, enquanto o 18O de G. bulloides diminui após 9,0 ka cal AP e permanece constante até o topo. No testemunho CF10-09A, o 18O das duas espécies variaram de forma antagônica com uma mudança entre 5,0 e 4,5 ka cal AP onde o 18O de G. ruber diminui de -0,4 para -1,0 ‰ e o 18O de G. bulloides aumenta de -0,8 para 0,0 ‰. Os resultados da razão Mg/Ca obtidos pelo método de ablação a laser indicaram uma heterogeneidade intra-câmara que resultou em uma incerteza de 1,49°C para reconstruções com G. ruber e 0,6°C para G. bulloides, assim como amplitudes individuais de 3,0 a 4,0 mmol/mol para G. ruber e de 3,0 a 5,0 mmol/mol para G. bulloides e diferenças significativas entre a última câmara (f) e as anteriores (f-1 e f-2) para as duas espécies. Tais efeitos foram associados ao efeito vital de simbiontes, a grande amplitude de temperatura existente sazonalmente no SRCF e a migração das espécies para águas mais profundas durante a reprodução. As razões Mg/Ca obtidas pelo método clássico foram geralmente mais altas que as razões obtidas pelo método de ablação a laser (LA-ICP-MS) mas se aproximaram e apresentaram variação temporal semelhante aos valores médios obtidos nas câmaras f-1 e f-2. Dessa forma podemos usar a razão Mg/Ca média das câmaras f-1 e f-2 para reconstruções de paleotemperatura de superfície, habilitando também a utilização da diferença entre as razões Mg/Ca das câmaras anteriores e final de G. ruber para reconstruir a estratificação da água. Entretanto, a diferente variabilidade entre a razão Mg/Ca da câmara f de G. ruber e a razão média de G. bulloides indicou possíveis sucessões sazonais, o que nos fez associar as temperaturas reconstruída por G. bulloides como temperaturas da camada de máximo de clorofila, podendo ser associada a intensidade da ressurgência. O período de variação do nível do mar (11,5 – 6,0 ka cal AP) foi marcado pela presença de águas frias, produtivas e homogêneas associadas possivelmente à ressurgência costeira cuja contribuição diminuiu à medida que a transgressão seguia e a frente da CB se aproximava, alcançando um primeiro máximo entre 7,0 e 6,0 ka cal AP no ponto 1 e entre 6,0 e 5,5 ka cal AP no ponto 9, marcado por águas quentes na superfície e frias na subsuperfície. Entre 5,5 e 3,5 ka cal AP, a ressurgência gradualmente se intensifica com maiores efeitos próximo a costa e mais restrita a subsuperfície na porção distal. A influência costeira apresenta um aumento em 5,0 ka cal AP na porção proximal e 4,0 ka cal AP na região distal. Entre 3,5 e 2,5 ka cal AP um forte sinal de águas quentes pouco estratificadas foi observado com maior influência de águas oligotróficas no ponto 9 e mistura de águas costeiras e oceânicas no ponto 1. Após 2,5 ka cal AP, o SRCF adquire suas configurações atuais marcadas por eventos intensos de ressurgência na porção proximal da plataforma e mais restritos a subsuperfície na porção distal. Isso pode ser associado ao fortalecimento da ZCAS ligado a intensificação da monsão Sulamericana no Holoceno Superior devido ao aumento da insolação de verão. / This thesis aimed to rebuild the palaeoceanography of Cabo Frio Upwelling System (CFUS) in the last 12,000 years through the use of ecological (comparison between the CFUS assemblages and adjacent areas assemblages with different oceanographic features) and geochemical proxies of planktonic foraminifera, and obtain more knowledge about the distribution of species under different oceanographic settings, and evaluating and implementing the recent LA-ICP-MS methodology for elemental analysis in foraminifera carbonates. For this, 34 box-cores tops encompassing the CFUS and adjacent areas in the Santos and Campos basins and two gravity cores were used. The group analysis of the assemblages in the Rio de Janeiro Continental Margin (RJCM) indicated the presence of four major biofacies spatially well separated: biofacies A - Campos Basin continental slope (contribution of tropical and subtropical species characterizing the Brazil Current front, BC), biofacies B - Santos basin (largest contributions of productivity related species, characterizing a signal of mixing of coastal productive and oceanic oligotrophic waters), biofacies C - northern sector of CFUS (G. ruber and contributions of Globigerina bulloides, featuring environment with frequent attenuated upwelling by warm water intrusions) and biofacies D - southern sector of CFUS (contribution of cold and productive waters species, featuring the Ekman upwelling setting). In addition, the spatial distribution of Globoturborotalita rubescens revealed preference of this species for continental shelf waters and Globigerinella calida being associated with post-upwelling conditions. The cores CF10-01B (offshore) and CF10-09A (inshore) covered the last 11.5 and 7.1 ka cal, respectively being the first most influenced by the Brazil Current and expressing a weaker upwelling signal than the second. In the core CF10-01B, the G. ruber 18O was more variable than the G. bulloides 18O with two decreases after 9.0 ka cal AP and after 4.0 ka cal BP, while the 18O of G. bulloides decreased only after 9.0 ka cal AP and remains constant up to the top. In the core CF10-09A, the 18O of the two species varied opposite with a change between 5.0 and 4.5 cal ka AP where the 18O G. ruber decreases from -0.4 to -1.0 ‰ and 18O of G. bulloides increases from -0.8 to 0.0 ‰. Mg/Ca ratio results by laser ablation method indicated heterogeneity intra-chamber which resulted in uncertainties for reconstructions up to 1.49°C for G. ruber and up to 0.6°C for G. bulloides as well as individual amplitudes from 3.0 to 4.0 mmol/mol to G. ruber and 3.0 to 5.0 mmol/mol to G. bulloides and significant differences between the last chamber (f) and previous (f-1 and f-2) for both species. These effects were associated with the symbiont vital effect, the wide seasonal temperature range in the SRCF and species migration to deeper waters during reproduction. The Mg/Ca ratio generated by the traditional method were generally higher than the ratios Mg/Ca reconstructed through LA-ICP-MS, although, when compared to the average of f-1 and f-2 chambers only, the values show similar mean and variability indicating both methods agree in reconstruction for surface paleotemperatures. It also allows the use of difference between the ratios of final and previous chamber of G. ruber for paleostratification reconstructions. However, the distinct variability between G. ruber f chamber Mg/Ca ratios and average G. bulloides Mg/Ca ratio indicated possible seasonal succession, which made us associate the temperatures reconstructed by G. bulloides to chlorophyll layer temperatures which may be associated with upwelling intensity. The sea level rise (from 11.5 to 6.0 ka cal BP) was marked by the presence of cold productive and homogeneous waters, possibly associated with coastal upwelling whose contribution gradually decreased during the course of the transgression, followed by the penetration of BC front on the shelf, reaching a first maximum between 7.0 and 6.0 ka cal BP offshore and between 6.0 and 5.5 ka cal BP inshore, marked by warm surface waters and cold subsurface waters. Between 5.5 and 3.5 ka cal BP, the upwelling gradually intensifies mainly inshore and restricted to subsurface offshore. An increased coastal influence is also detected with peaks at 5.0 ka cal BP inshore and 4.0 cal ka BP offshore. Between 3.5 and 2.5 ka cal BP a strong signal of warm water was observed with greater influence of oligotrophic waters inshore and mixture of coastal and oceanic waters offshore. After 2.5 ka cal BP, the SRCF acquires its current settings marked by intense upwelling events, better expressed inshore and restricted to subsurface offshore. This change may correspond to an intensification of the SACZ linked to the strengthening of the South American Monsoon during the late Holocene due to the increase in summer insolation.
8

Struktura a vlastnosti hořčíkových slitin Mg-Ca-Zn / Structure and properties of magnesium alloys Mg-Ca-Zn

Hlavnička, Jiří January 2014 (has links)
This master’s thesis deals with design and preparation of a new biodegradable magnesium alloy based on Mg-Ca-Zn. Based on information from literature, the Mg-3Zn-2Ca alloy was designed. The base material was produced by gravity casting and the evaluation in the as-cast and heat treated state was performed. For preparation of the experimental material, following methods were designed: squeeze casting, hot rolling and the ECAP. During preparation by hot rolling, no optimal conditions were found and significant cracks occurred in both as-cast and heat treated material. In the case of experimental material, prepared by the ECAP method with back-pressure, better combination of stress-strain properties was observed. Also the squeeze casting method showed improvement; especially the amount of casting defects was eliminated. The evaluation of microstructure and mechanical properties was performed by the light and scanning electron microscopy, RTG phase analysis and the tensile and compression tests.
9

Environmental controls on the geochemistry of Globorotalia truncatulinoides in the Gulf of Mexico: Implications for paleoceanographic reconstructions

Reynolds, Caitlin Elizabeth 27 June 2018 (has links)
Modern observations of planktic foraminifera from sediment trap studies help to constrain the regional ecology of paleoceanographically valuable species. Results from a weekly-resolved sediment trap time series (2008–2014) in the northern Gulf of Mexico demonstrate that 92% of Globorotalia truncatulinoides flux occurs in winter (January, February, and March), and that encrusted and non-encrusted individuals represent calcification in distinct depth habitats. We use individual foraminiferal analysis (IFA) of G. truncatulinoides tests to investigate differences in the elemental (Mg/Ca) and isotopic composition (18O and 13C) of the encrusted and non-encrusted ontogenetic forms of G. truncatulinoides, and to estimate their calcification depth in the northern Gulf of Mexico. We estimate that non-encrusted and encrusted G. truncatulinoides have mean calcification depths of 66 ± 9 meters and 379 ± 76 meters, respectively. We validate the Mg/Ca-calcification temperature relationship for G. truncatulinoides and demonstrate that the 18O and Mg/Ca of the non-encrusted form is a suitable proxy for winter surface mixed layer conditions in the Gulf of Mexico. Care should be taken not to combine encrusted and non-encrusted individuals of G. truncatulinoides for down core paleoceanographic studies.
10

A Multi-Proxy Investigation of the Late Glacial "Mystery Interval" (17.5-14.5 ka)in the Cariaco Basin, Venezuela

Yurco, Lyanne Nadine 01 January 2010 (has links)
The "Mystery Interval" (17.5-14.5 ka) is an unusual time period of abrupt global climate change during the late glacial between Heinrich event 1 and the Bølling-Allerød warm period (~17.5-14.5 ka). This period was characterized by extreme cooling in the North Atlantic region, warming in Antarctica, the rise of atmospheric greenhouse gases, and a variety of hydrologic changes around the globe, all of which may have stemmed from Heinrich event 1 and the possible collapse of the Atlantic?s meridional overturning circulation. A distinctive and unique gray clay layer was deposited in Cariaco Basin, Venezuela, within this time period, which has no apparent counterpart in the basin?s sediment record for at least the last full glacial-interglacial cycle. One hypothesis for the origin of the gray layer is that the initial pulse of deglacial sea level rise over the shallow Unare Platform, south of the basin, caused remobilization and rapid emplacement of previously deposited shelf sediments. However, analysis of the timing and extent of sea level rise as well as evidence from radiocarbon ages and a comparison of the organic content of gray layer sediments and known turbidites in the basin does not support this hypothesis. The alternative hypothesis, that the gray layer is related to increased fluvial discharge from local rivers as a result of elevated regional rainfall, is supported by a number of lines of evidence. The bulk sediment elemental content measured by scanning X-ray fluorescence (XRF) (this study) and clay mineralogy (Yu, 1996) support input of local river sediments. Coccolith abundances (Mertens et al., 2009), sea surface salinity (SSS) estimates and foraminiferal Ba/Ca analysis (this study) are also consistent with freshening of surface waters caused by elevated river runoff. This implies increased rainfall in the region which is corroborated by elemental and mineralogical ratios that point to increased precipitation and chemical weathering. Average terrigenous grain size and terrigenous fluxes are also in line with modern rainy season data. Despite prior suggestions that the Cariaco Basin region should be dry due to a southward-shifted Inter-tropical Convergence Zone (ITCZ) during cool periods in the North Atlantic, such as the Mystery Interval, data presented in this thesis suggest elevated rainfall and fluvial input related to deposition of the gray layer. Multiple lines of proxy evidence indicate that Cariaco Basin may have been characterized by a drier climate in the first part of the Mystery Interval but then shifted to a wetter climate in the second part, after ~16.5 ka, which might resolve this apparent conflict. The change to wetter conditions is most likely due to a northward shift in the position of the ITCZ, possibly due to warming tropical North Atlantic sea surface temperatures (SSTs) and/or extreme North Atlantic seasonality. Comparison of the Cariaco Basin climate records to climate observations from around the globe reveal a similar shift in climatic conditions around the same time, suggesting that the Mystery Interval may actually have been a two-phase event. Although many of the climatic observations from around the world can be explained by a shift from a southerly position of the ITCZ within the first part of the Mystery Interval to a more northerly position during the later part of the interval, many regions are not directly affected by the ITCZ and other complicating factors may play a role in the rapid climate changes observed globally.

Page generated in 0.0386 seconds