• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical properties and corrosion behaviours of the as-cast ZK40 alloys modified with individual additions of CaO, Gd, Nd and Y / Propriedades mecânicas e comportamento à corrosão de ligas fundidas ZK40 modificadas com adições individuais de CaO, Gd, Nd e Y

Buzolin, Ricardo Henrique 23 November 2016 (has links)
The effect of individual additions of calcium oxide (CaO), Gd, Nd and Y was investigated on the microstructure, mechanical properties and corrosion resistance of the as-cast ZK40 alloy. The microstructural features were analised using optical, scanning and transmission electron microscopy, X-ray diffraction and Scanning Kelvin Atomic Probe Force Microscopy. The compressive and tensile behaviours of the as-cast alloys at room temperature were investigated. Electrochemical Impedance Spectroscopy, hydrogen evolution and weight loss under immersion in 0.5 wt.% NaCl solution were used to evaluate the corrosion behaviour. The results of the mechanical and corrosion tests were correlated with the microstructures. The 2 wt.% Gd addition enhanced the ductility, while the Nd addition resulted in deterioration in mechanical properties. The addition of 2 wt.% Gd and 1 wt.% Y resulted in the improvement of the ductility. The addition of CaO did not affect the mechanical properties while the 2 wt.% Nd deteriorate it. The 1 wt.% Y addition enhanced the ductility. The CaO addition did not caused enhancement in mechanical properties. The corrosion behaviour was enhanced with the addition of CaO and Gd. The modification of ZK40 with Gd opens up new perspectives in the development of Mg-Zn based alloys. / O efeito da adição individual de óxido de cálcio (CaO), Gd, Nd e Y foi investigado na microestrutura, propriedades mecânicas e resistência à corrosão de ligas ZK40 fundidas. As características microestruturais foram analisadas via microscopia óptica, microscopia eletrônica de varredura, microscopia eletrônica de transmissão, difração de Raios-X e \"Scanning Kelvin Atomic Probe Force Microscopy\". O comportamento à compressão e à tração das ligas à temperatura ambiente foi investigado. Espectroscopia eletroquímica de impedância, evolução de hidrogênio e ensaios de imersão em solução de 0.5% em peso de NaCl foram utilizados para avaliar a resistência à corrosão. Os resultados dos ensaios mecânicos e corrosão foram relacionados com a microestrutura. A adição de 2% em peso de Gd melhorou a ductilidade, ao passo que a adição de Nd resultou na piora das propriedades mecânicas. A adição de 2% em peso de Gd e 1% em peso de Y resultou na melhora da ductilidade. A adição de 1% em peso de Y causou uma melhora na ductilidade e a adição de CaO não teve impacto benéfico nas propriedades mecânicas. A resistência à corrosão foi melhorada com a adição de CaO e Gd. A modificação da liga ZK40 com a adição de Gd abre novas perspectivas no desenvolvimento de ligas Mg-Zn.
2

Mechanical properties and corrosion behaviours of the as-cast ZK40 alloys modified with individual additions of CaO, Gd, Nd and Y / Propriedades mecânicas e comportamento à corrosão de ligas fundidas ZK40 modificadas com adições individuais de CaO, Gd, Nd e Y

Ricardo Henrique Buzolin 23 November 2016 (has links)
The effect of individual additions of calcium oxide (CaO), Gd, Nd and Y was investigated on the microstructure, mechanical properties and corrosion resistance of the as-cast ZK40 alloy. The microstructural features were analised using optical, scanning and transmission electron microscopy, X-ray diffraction and Scanning Kelvin Atomic Probe Force Microscopy. The compressive and tensile behaviours of the as-cast alloys at room temperature were investigated. Electrochemical Impedance Spectroscopy, hydrogen evolution and weight loss under immersion in 0.5 wt.% NaCl solution were used to evaluate the corrosion behaviour. The results of the mechanical and corrosion tests were correlated with the microstructures. The 2 wt.% Gd addition enhanced the ductility, while the Nd addition resulted in deterioration in mechanical properties. The addition of 2 wt.% Gd and 1 wt.% Y resulted in the improvement of the ductility. The addition of CaO did not affect the mechanical properties while the 2 wt.% Nd deteriorate it. The 1 wt.% Y addition enhanced the ductility. The CaO addition did not caused enhancement in mechanical properties. The corrosion behaviour was enhanced with the addition of CaO and Gd. The modification of ZK40 with Gd opens up new perspectives in the development of Mg-Zn based alloys. / O efeito da adição individual de óxido de cálcio (CaO), Gd, Nd e Y foi investigado na microestrutura, propriedades mecânicas e resistência à corrosão de ligas ZK40 fundidas. As características microestruturais foram analisadas via microscopia óptica, microscopia eletrônica de varredura, microscopia eletrônica de transmissão, difração de Raios-X e \"Scanning Kelvin Atomic Probe Force Microscopy\". O comportamento à compressão e à tração das ligas à temperatura ambiente foi investigado. Espectroscopia eletroquímica de impedância, evolução de hidrogênio e ensaios de imersão em solução de 0.5% em peso de NaCl foram utilizados para avaliar a resistência à corrosão. Os resultados dos ensaios mecânicos e corrosão foram relacionados com a microestrutura. A adição de 2% em peso de Gd melhorou a ductilidade, ao passo que a adição de Nd resultou na piora das propriedades mecânicas. A adição de 2% em peso de Gd e 1% em peso de Y resultou na melhora da ductilidade. A adição de 1% em peso de Y causou uma melhora na ductilidade e a adição de CaO não teve impacto benéfico nas propriedades mecânicas. A resistência à corrosão foi melhorada com a adição de CaO e Gd. A modificação da liga ZK40 com a adição de Gd abre novas perspectivas no desenvolvimento de ligas Mg-Zn.
3

An Assessment of Novel Biodegradable Magnesium Alloys for Endovascular Biomaterial Applications

Persaud-Sharma, Dharam 10 June 2013 (has links)
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.
4

First Principles Study Of Structure And Stacking Fault Energies In Some Metallic Systems

Datta, Aditi 05 1900 (has links)
Plastic deformation in crystalline materials largely depends on the properties of dislocations, in particular their mobility. While continuum description of deformation of a crystalline metal can be made reasonably well by considering the elastic properties of dislocations and neglecting the core, crystallographic aspects of dislocation motion require precise understanding of the core effects. The concept of the generalized stacking fault (GSF) energy was proposed as means to describe this. GSF energy, a fundamental property of a given material, can be determined using first principles total energy calculations. In this thesis, we use GSF to understand some of the intriguing mechanical responses recently observed in some metallic systems. First, we examine the structures and stacking fault energies in Mg-Zn-Y alloy system. This system is unique in the sense that trace additions of Zn and or Y result in long period stacking sequences such as 6l and 14l, as reported in recent literature. Further, these alloys exhibit extraordinary mechanical properties. We attempt to rationalize these experimental observations through first principles calculations of energies of periodic structures with different stacking sequences and stacking faults. For pure Mg, we find that the 6-layer structure with the ABACAB stacking is most stable after the lowest energy hcp structure with ABAB stacking. Charge density analysis shows that the 2l and 6l structures are electronically similar, which might be a cause for better stability of 6l structure over a 4l sequence or other periodic structures. Addition of 2 atomic% Y leads to stabilization of the structure to 6l sequence whereas the addition of 2 atomic% Zn makes the 6l energetically comparable to that of the hcp. Stacking fault (SF) on the basal plane of 6l structure is higher in energy than that of the hcp 2l Mg, which further increases upon Y doping and decreases significantly with Zn doping. SF energy surface for the prismatic slip indicates dissociation of dislocations in alloys with a 6l structure. Thus, in an Mg-Zn-Y alloy, Y stabilizes the long periodicity, while Zn doping provides a synergistic effect in improving the mechanical properties alongwith strengthening due to long periodic phases. Our investigation of surface properties and magnetism in Ni revealed that, the universal binding energy relation (UBER) derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleavage cracked surfaces are allowed to relax through atomic displacements. We find that two characteristic length-scales are involved in the cleavage of a crystal accompanied by structural relaxation at the cleaved surface. Based on that, we suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of relaxed surfaces upon cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in fcc, bcc, and hcp metals, as well as covalently bonded materials. We also found that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occuring at higher displacements. We have attempted understanding these ideas through images obtained from electronic densities and eigen states. Our work should be useful in providing inputs to multi-scale simulations of fracture in materials. The third phase of the work reports the stacking fault energy and twinning in Ni with a particular emphasis on the size effect. Experimental and computational research on Nan crystalline metals (mostly on Ni) indicates unique facets of dislocation activity (extended partial dislocations) and modes of deformation (twinning). In order to capture the intrinsic scaling eject in the nano-regime, it is imperative to account for the complex electronic structure of the metal in question. The stacking fault (SF) and twinning fault (TF) energies in nano-thin elm of Ni with 7, 13, 19, and 25 layers of (111) planes were determined using rest-principles density functional theory (DFT) total energy calculations. Generalized planar fault (GPF) energy curves of the nano-thin alms show higher extreme vis-a-vis the bulk, indicating that creation of SFs in nano-Ni is relatively difficult. In contrast, the ratios of energy barriers relevant to nucleation of dislocations and twinning support the observed enhanced tendency for extended partial dislocation formation and twinning in the nano-thin films in comparison with bulk. Our results should be useful in understanding deformation behavior of nano-structured Ni-based alloys used as advanced structural materials.
5

Development Of Cast Magnesium Alloys With Improved Strength

Shrikant, Joshi Sameehan 04 1900 (has links) (PDF)
Aim of the present work was to explore the possibility of improving strength of cast Mg by alloying additions, viz., Si and Zn+Al. All the alloys were produced by squeeze casting technique using squeeze pressure of 12MPa and their microstructure, tensile and corrosion properties were studied. Mg-Si system was chosen because the intermetallic compound Mg2Si possesses many desirable properties, such as, low density, high hardness, high melting point. Hence, there is scope for improving the strength of Mg by dispersion of primary Mg2Si particles. Addition of Si to Mg resulted in the formation of �-Mg, particles of primary Mg2Si and eutectic as microstructural constituents. The morphology of primary Mg2Si changed from polyhedral shaped particles to dendrites as Si content was increased from 3.57 to 5.5 wt%. Volume fraction of primary Mg2Si increased with increase in Si content. Particle size of primary Mg2Si also increased with increase in silicon content but at the same time it was found to be dependent on melt temperature, i.e., a lower particle size was obtained at higher melt temperatures. Addition of Al and Sr was made to Mg-2Si alloy in order to further increase the strength by solid solution strengthening and refinement/modification of primary Mg2Si particles/eutectic. Addition of 1.2 wt% Al to Mg-2Si alloy resulted in irregular type of morphology of Mg2Si particles and increased particle size. Addition of 0.2 wt% SrtoMg-2Si-1.2Al alloy resulted in slight refinement of primary Mg2Si particles and modification of eutectic. Addition of 0.4 wt% Sr resulted in both refinement and restoration of morphology of Mg2Si particles from irregular to polyhedral shape. This was accompanied by destruction of eutectic, and rods containing Mg, Si, Al and Sr were observed. The addition of 1.33 wt%Si to Mg resulted in improvement in 0.2%PS by about 80 MPa,UTS by about 40MPa and these values did not change much till the addition of 3.57 wt% Si. A drop in the strength values was observed at Si content of 5.5 wt%,where transition in morphology of primary Mg2Si occurred from polyhedral to dendrite. Addition of Si resulted in reduction in % elongation by about 2%. The addition of Al and Sr did not change the tensile properties of binary Mg-2Si alloy much. It was concluded that the volume fraction and size of primary Mg2Siparticles obtained with Si addition up to 3.57 wt% did not contribute much to strength and the strengthening mainly came from the eutectic present in the matrix. As Si content was increased to 5.5 wt% in order to increase the volume fraction of primary Mg2Si particles, the morphology of Mg2Si changed to dendritic type resulting in reduction in strength. Thus, the maximum increase in strength is achieved at near eutectic composition,i.e.,intheMg-1.33Sialloy,andfurtherincreaseinstrengthdoesnotseem to be feasible with this alloy system. The ductility of all the Mg-Si based alloys was also low, i.e, 0.5% elongation to fracture or less. Regarding the corrosion behaviour, the addition of Si to Mg deteriorated the corrosion resistance and the addition of Al and Sr further worsened it. Since further improvement in tensile properties did not seem feasible with Mg-Si alloy system, the focus was shifted to Mg-Zn-Al alloy system. There is scope for improvement in strength in Mg-Zn-Al alloy system by solid solution strengthening, grain refinement and precipitation hardening. It was observed that the addition of Zn and Al resulted in microstructure containing α-Mg grains and secondary phase at the grain boundary. XRD analysis showed the secondary phase to be Al5Mg11Zn4 but EDS analysis did not match with this composition. Therefore, the nature of this phase remains uncertain. Addition of 6 wt% Zn and 1 wt% Al resulted in improvement in strength as well as ductility: 0.2%PS improved by about 70 MPa, UTS by about 100 MPa and % elongation by about 7%. Addition of small amounts of Caresultedinrefinementofmicrostructurecausingimprovementinstrengthwithout much decrease in % elongation. Increase in Al content from 1 to 4 wt% resulted in increase in 0.2%PS but UTS slightly decreased, as % elongation reduced. Alloys subjected to T6 heat treatment showed improvement in strength but slight reduction in % elongation. ZA64 alloy in T6 condition gave 130 MPa 0.2%PS, 225 MPa UTS and 4.9% elongation, which are much higher tensile properties as compared Mg-Si alloys. All the three mechanisms mentioned above contribute to the strengthening. There is scope for further improvement in strength by employing a more suitable heat treatment. Regarding corrosion behaviour, addition of 6 wt% Zn and 1 wt% of Al to Mg did not deteriorate its corrosion resistance much. Addition of small amounts of Ca was found to be beneficial for corrosion resistance, whereas an increase in Al content lowered the corrosion resistance. Heat treatment also reduced the corrosion resistance.
6

Studies Of Glass Formation In Al-La-Ni And Mg-TM-RE Alloys With A Structure Mapping Approach

Biswas, Tripti 01 1900 (has links)
The glass-forming composition ranges in Al-La-Ni and Mg-TM (Cu, Zn)-Y alloys were predicted using Miedema’s model. Glass-forming abilities of Al-La-Ni alloys and Mg-Cu-RE alloys were studied in terms of reduced glass transition temperature (Trg), supercooled liquid region (∆Tx) and γ parameters. The glass-forming ability parameters of Mg-Cu-RE (RE: rare-earth) alloys were correlated with Mendeleev number. The Miedema model has been used to determine glass-forming composition range in binary Al-La, Al-Ni and La-Ni alloy systems and the ternary Al-La-Ni system by neglecting the ternary interactions. The glass-forming composition range for Al-La, Al-Ni and La-Ni alloy systems extends from 5 to 90 at% La, 30 to 80 at% Ni and 5 to 95 at% Ni, respectively. In these systems the predicted glass-forming composition range is wider than the experimentally observed range. Miedema model, restricting the difference of enthalpy of formation between the amorphous and solid solution phases to within –10000 J/mole to –55000 J/mole gives rise to better prediction of glass-forming composition range compared to the original models. The concept of mixing enthalpy and mismatch entropy has been used in order to quantify Inoue’s criteria of glass formation. The mixing enthalpy and normalised mismatch entropy of the ternary Al-La-Ni alloys, calculated by the extended regular solution model, vary between –12 to –40 kJ/mol and 0.16 to 0.65, respectively. The enthalpy contour plot has been constructed to distinguish the glass-forming compositions on the basis of the increasing negative enthalpy of the composition. Six Al rich Al-La-Ni alloys with nominal compositions Al89La6Ni5, Al85La10Ni5, Al85La5Ni10, Al82La8Ni10, Al80La10Ni10 and Al60La20Ni20 three La rich Al-La-Ni alloys with nominal compositions Al34La33Ni33, Al40La40Ni20 and Al25La50Ni25 have been chosen from the Al-La-Ni ternary phase diagram, to study the glass-forming ability of Al-La-Ni ternary alloy system and the correlation between La-based and Al-based glasses. All the alloys have been prepared using arc melting unit. All the alloy ribbons have been prepared using single-wheel vacuum melt-spinning unit. Two different wheel speeds of 20 m/s and 40 m/s were used for preparing ribbons of all the nine alloys. All the Al-La-Ni compositions, excluding equi-atomic composition (Al34La33Ni33) and Al60La20Ni20, give rise to amorphous phases. The supercooled liquid region and reduced glass transition temperature of this system increases with a decrease in Al content and an increase in La content. The glass-forming ability of the Al rich Al-La-Ni alloys is lower than that of the La-rich Al-La-Ni alloys. The glass-forming ability has been explained by taking into account the binary heat of mixing and the atomic radius mismatch of the constituent elements. Preferential crystallisation takes place during the heat treatment of glassy ribbons. The crystalline products are partially influenced by composition and binary heat of mixing between elements. Mg65Cu25Y10 alloy is a classical glass former of a family of Mg-based alloys. The partial or complete substitution of Y with other rare earth elements has been introduced to correlate the Mendeleev Number with the glass-forming ability parameters: reduced glass transition temperatures (Trg = Tg/Tl), supercooled liquid regions (∆Tx = Tx – Tg) and γ-criterion (TX/(Tg + Tm)). Mg-Cu-RE alloys with nominal compositions Mg65Cu25Y10, Mg65Cu25Y5Gd5, Mg65Cu25Y5Nd5, Mg65Cu25Gd10 and Mg65Cu25Nd10 were chosen for this work. The high reduced glass transition temperature, wider supercooled liquid region and higher γ value of Mg-Cu-Gd-Y amorphous alloy compared to Mg-Cu-Y and Mg-Cu-Nd-Y systems indicates that Mg-Cu-Gd-Y alloys possess higher glass-forming ability. The devitrification of all Mg-Cu-RE glassy alloys used for this work give rise to Mg2Cu (oF48) phase, which is known as anti-Laves phase. The glass-forming composition range for binary and ternary Mg-Cu-Y systems was calculated using Miedema’s model. The development of accurate methods of prediction of glass-forming ability in metallic systems is an important challenge. Pettifor has pioneered the Structure Mapping approach to binary intermetallics. The Pettifor approach can be adapted to the designing of bulk metallic glasses (BMGs). This method has been used to design Al-based and Mg-based BMG’s. Pettifor introduced an integer parameter to characterize the elements, which he called the Mendeleev Number. Essentially, Pettifor’s scheme orders the elements in a sequence of increasing electronegativity. With respect to Mendeleev Number, the Mg-Cu-RE system can be regarded as a binary system, because of the closeness of Mg and Cu (Mg:73, Cu:72, Y:25, Gd:27 and Nd:30). For this system, Mendeleev Number is a more effective parameter than atomic size (Mg: 1.60 Å, Cu: 1.27 Å), as a predictor of glass-forming ability. The effect of Y and rare earth elements on glass forming ability is similar. The atomic number of Y (39) is away from that of the rare earth elements and the Mendeleev Number of Y (25) comes in between those of the rare earth elements. Mg-Zn-Y system is an interesting system for researchers because of higher strength of these alloys. This system draws the crystallographers’ attention due to its composition-dependent structure variations. The Mg-rich RS/PM Mg-Zn-Y alloys yield superior mechanical properties. Therefore, the Mg-rich Mg-Zn-Y system has been chosen to study the microstructural evolution, even though the theoretical calculations for the glass-forming composition range for the Mg-Zn-Y system shows that this system is not a good glass former. Mg-Zn-Y system with nominal compositions Mg97Zn1Y2, Mg97Zn2Y1, Mg97−xZn1Y2Zrx and Mg92Zn6.5Y1.5 were chosen to study the microstructural evolution of these alloys. A small increase in Zn amount (above 2 at.%) in Mg-rich Mg-Y system results in quasicrystalline particles embedded in the matrix, whereas the addition of Zn up to 2 at.% leads to microstructural changes in the α-Mg solid solution.
7

The Influence of Alloying Additions on Diffusion and Strengthening of Magnesium

Kammerer, Catherine 01 January 2015 (has links)
Magnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate development of suitable wrought Mg alloys, an integrated Materials Genomic approach must be taken where thermodynamics and diffusion kinetic parameters form the basis of alloy design, process development, and properties-driven applications. The objective of this research effort is twofold: first, to codify the relationship between diffusion behavior, crystal structure, and mechanical properties; second, to provide fundamental data for the purpose of wrought Mg alloy development. Together, the principal deliverable of this work is an advanced understanding of Mg systems. To that end, the objective is accomplished through an aggregate of studies. The solid-to-solid diffusion bonding technique is used to fabricate combinatorial samples of Mg-Al-Zn ternary and Mg-Al, Mg-Zn, Mg-Y, Mg-Gd, and Mg-Nd binary systems. The combinatorial samples are subjected to structural and compositional characterization via Scanning Electron Microscopy with X-ray Energy Dispersive Spectroscopy, Electron Probe Microanalysis, and analytical Transmission Electron Microscopy. Interdiffusion in binary Mg systems is determined by Sauer-Freise and Boltzmann-Matano methods. Kirkaldy*s extension of the Boltzmann-Matano method, on the basis of Onsager*s formalism, is employed to quantify the main- and cross-interdiffusion coefficients in ternary Mg solid solutions. Impurity diffusion coefficients are determined by way of the Hall method. The intermetallic compounds and solid solutions formed during diffusion bonding of the combinatorial samples are subjected to nanoindentation tests, and the nominal and compositionally dependent mechanical properties are extracted by the Oliver-Pharr method. In addition to bolstering the scantly available experimental data and first-principles computations, this work delivers several original contributions to the state of Mg alloy knowledge. The influence of Zn concentration on Al impurity diffusion in binary Mg(Zn) solid solution is quantified to impact both the pre-exponential factor and activation energy. The main- and cross-interdiffusion coefficients in the ternary Mg solid solution of Mg-Al-Zn are reported wherein the interdiffusion of Zn is shown to strongly influence the interdiffusion of Mg and Al. A critical examination of rare earth element additions to Mg is reported, and a new phase in thermodynamic equilibrium with Mg-solid solution is identified in the Mg-Gd binary system. It is also demonstrated that Mg atoms move faster than Y atoms. For the first time the mechanical properties of intermetallic compounds in several binary Mg systems are quantified in terms of hardness and elastic modulus, and the influence of solute concentration on solid solution strengthening in binary Mg alloys is reported. The most significant and efficient solid solution strengthening is achieved by alloying Mg with Gd. The Mg-Nd and Mg-Gd intermetallic compounds exhibited better room temperature creep resistance than intermetallic compounds of Mg-Al. The correlation between the concentration dependence of mechanical properties and atomic diffusion is deliberated in terms of electronic nature of the atomic structure.

Page generated in 0.0159 seconds