• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SUBMINIATURE GPS INERTIAL TIME SPACE POSITION INFORMATION

Khosrowabadi, Allen, Gurr, Richard, Fleishans, Amy 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / In the past few years, GPS has proven itself as an effective source of time space position information (TSPI) data for air vehicles. Currently, GPS truth systems are used to track aircraft ranging from low dynamic vehicles to high dynamic fighters. However, low-cost GPS TSPI instrumentation is not currently available for stores and weapons delivered by air vehicles. To date, data is collected by tracking dropped items using radar or optical means. This process is costly and time consuming. The purpose of this project is to leverage the recent advances in micro-electromechanical systems (MEMS) technology to develop a subminiature, inexpensive, low power, disposable telemetrytransmitting package. The purpose of this transmitting package is to up-link the GPS positional data from the weapon or store to the host aircraft. This data is then retransmitted by the host aircraft to a ground station and/or recorded on board for post processing. The transmission of the data to the host aircraft can provide near real- time position data for the released object. The transmitting package must have a unique identification method for application in tracking multiple objects. Since most of the systems used in weapons testing will be destroyed, it is extremely important to keep the development and maintenance cost low. In addition, the package must be non-intrusive to avoid any significant modification to the weapon and to facilitate quick instrumentation of the weapon for test and evaluation.
2

Development of Automated Robotic Microassembly for Three-dimensional Microsystems

Wang, Lidai 03 March 2010 (has links)
Robotic microassembly is a process to leverage intelligent micro-robotic technologies to manipulate and assemble three-dimensional complex micro-electromechanical systems (MEMS) from a set of simple-functional microparts or subsystems. As the development of micro and nano-technologies has progressed in recent years, complex and highly integrated micro-devices are required. Microassembly will certainly play an important role in the fabrication of the next generation of MEMS devices. This work provides advances in robotic microassembly of complex three-dimensional MEMS devices. The following key technologies in robotic microassembly are studied in this research: (i) the design of micro-fasteners with high accuracy, high mechanical strength, and reliable electrical connection, (ii) the development of a microassembly strategy that permits the manipulation of microparts with multiple degrees of freedom (DOFs) and high accuracy, (iii) fully automated microassembly based on computer vision, (iv) micro-force sensor design for microassembly. An adhesive mechanical micro-fastener is developed to assemble micro-devices. Hybrid microassembly strategy, which consists of pick-and-place and pushing-based manipulations, is employed to assemble three-dimensional micro-devices with high flexibility and high accuracy. Novel three-dimensional rotary MEMS mirrors have been successfully assembled using the proposed micro-fastener and manipulation strategy. Fully automatic pick-and-place microassembly is successfully developed based on visual servo control. A vision-based contact sensor is developed and applied to automatic micro-joining tasks. Experimental results show that automatic microassembly has achieved sub-micron accuracy, high efficiency, and high success rate. This work has provided an effective approach to construct the next generation of MEMS devices with high performance, high efficiency, and low cost.
3

Development of Automated Robotic Microassembly for Three-dimensional Microsystems

Wang, Lidai 03 March 2010 (has links)
Robotic microassembly is a process to leverage intelligent micro-robotic technologies to manipulate and assemble three-dimensional complex micro-electromechanical systems (MEMS) from a set of simple-functional microparts or subsystems. As the development of micro and nano-technologies has progressed in recent years, complex and highly integrated micro-devices are required. Microassembly will certainly play an important role in the fabrication of the next generation of MEMS devices. This work provides advances in robotic microassembly of complex three-dimensional MEMS devices. The following key technologies in robotic microassembly are studied in this research: (i) the design of micro-fasteners with high accuracy, high mechanical strength, and reliable electrical connection, (ii) the development of a microassembly strategy that permits the manipulation of microparts with multiple degrees of freedom (DOFs) and high accuracy, (iii) fully automated microassembly based on computer vision, (iv) micro-force sensor design for microassembly. An adhesive mechanical micro-fastener is developed to assemble micro-devices. Hybrid microassembly strategy, which consists of pick-and-place and pushing-based manipulations, is employed to assemble three-dimensional micro-devices with high flexibility and high accuracy. Novel three-dimensional rotary MEMS mirrors have been successfully assembled using the proposed micro-fastener and manipulation strategy. Fully automatic pick-and-place microassembly is successfully developed based on visual servo control. A vision-based contact sensor is developed and applied to automatic micro-joining tasks. Experimental results show that automatic microassembly has achieved sub-micron accuracy, high efficiency, and high success rate. This work has provided an effective approach to construct the next generation of MEMS devices with high performance, high efficiency, and low cost.
4

Design and Analysis of a Steady-Voltage Piezoelectric Transducer

Tsou, Teng-chieh 23 March 2010 (has links)
As micro-electromechanical systems (MEMS) and smart technologies have been more matured, applications for wider fields are more available. Piezoelectric materials have the property of electromechanical energy conversion, which can convert vibration energy into electrical energy. In this paper, a general concept of the piezoelectric energy conversion is first given. Then, a simple modeling design and analysis for a special transverse mode of the piezoelectric generator called mode 31 is presented. With regard to analytical method, the piezoelectric equivalent circuit model is able to illustrate the important parameters that influence the process how the piezoelectric element generates electrical energy. We may adjust unimorph voltage by controlling the deflection of cantilever beam. And the output power is taken as the indicated parameters for the generator. The energy conversion efficiency of the generator depends on the operation frequency. By using this way, the piezoelectric power generator may be widely applied to environment with both low-frequency and high-frequency vibration range.
5

Optimization of a Steady-Voltage Piezoelectric Transducer

Tsai, Chi-Chang 23 September 2011 (has links)
Mechanical energy exists all over the place in our living, and vibration is the most common way of mechanical performance. Micro-electromechanical systems, the application which integrate techniques and combine different field of research, make it possible to convert vibration into electrical energy by using piezoelectric materials; moreover, it become a small piezoelectric power generator. The thesis set up an equivalent circuit model based on the principle of piezoelectric and cantilever mechanics for experimenting the model¡¦s exactness; consequently, model shows that resonant frequency has no effect on generate electricity when amplitude was fixed. The thesis attempts to change the shape of unimorph for enhancing its power generation. By using different sharp of unimorph, the experiment demonstrate that power generation have direct ratio with frequency at amplitude of 5mm. Moreover, different shapes of the unimorph at frequency of 16Hz have different power output; the disparity among power output might up to 1.78 times.
6

Towards environmentally friendly electrodeposition : using citrate based electrolytes to deposit nickel and nickel-iron

Perry, Richard January 2016 (has links)
The production of magnetic materials is of great interest for use in the micro-fabrication industry. In particular, Permalloy (Ni80Fe20) is used in the production of micro-electromechanical systems (MEMS) due to its favourable magnetic properties (high relative permeability, low coercivity and high magnetic saturation). This leads to applications in devices such as inductors, transformers and micro-actuators. The electrodeposition of NiFe is also of fundamental electrochemical interest, as there is anomalous thermodynamic behaviour, with the less noble (iron) metal depositing preferentially to the more noble (nickel) metal. To enable consistent alloy deposition nickel and nickel-iron baths are currently almost exclusively based on boric acid. Boric acid has an important role in the deposition of NiFe films but its role(s) in the electro-deposition mechanism is (are) not wholly understood. Recently (2011) boric acid has been identified as a “substance of very high concern” based on the criteria established by EU chemical regulation, REACH. In anticipation of increased regulation an alternative was sought to provide a benign alternative to boric acid in the NiFe plating bath suitable for use in micro-fabrication. Initial work was performed to benchmark the performance of existing boric acid based electro-deposition baths. Cyclic voltammetry was performed, which demonstrated the deposition of nickel and nickel-iron from boric acid baths. Coulombic efficiencies up to 93 % were measured for the deposition of nickel using the electrochemical quartz crystal microbalance (EQCM) on platinum electrodes. For nickel-iron deposition control of the film composition was demonstrated on copper electrodes through varying the iron (II) concentration, current density and temperature. A citrate bath for the deposition of nickel-iron was then developed and characterised. Cyclic voltammetry was performed in these citrate baths demonstrating the deposition of nickel and nickel-iron. Optimal conditions for depositing Ni80Fe20 were demonstrated to be an elevated temperature (60 °C) with a current density of 20 mA cm-2 and a pH of 3. Using the EQCM the efficiency for nickel deposition was measured to be > 80 %. The effects of sodium saccharin and sodium dodecyl sulfate as additives were investigated; these were shown to influence morphology but not the coulombic efficiency. Decreasing the pH was shown to lower the efficiency of nickel deposition from the citrate bath. Comparisons of key properties were made between NiFe films deposited from a boric acid bath and the citrate bath developed in this work. Test structures were used to compare the strain in the films; no significant difference was found. For 2.2 μm thick Ni80Fe20 films the sheet resistance was measured using Greek cross structures as 0.078 ± 0.004 Ω/square for films deposited from the boric acid bath and 0.090 ± 0.006 Ω/square from the citrate bath. The magnetic saturation, Ms, was measured as 895 ± 66 emu cm-3 for deposits from the boric acid bath and 923 ± 111 emu cm-3 from the citrate bath. These again show no significant difference in these values within experimental error. Coercivities for these films were measured to be between 20 and 120 A m-1. In combination, this work demonstrates the development and characterisation of a new citrate based electrodeposition bath for nickel and nickel-iron. Similar chemical, electrical, mechanical and magnetic properties were found from films deposited from both baths, thus demonstrating the suitability of the citrate bath for the deposition of nickel-iron films in microfabrication.
7

Fabrication and characterisation of carbon-based devices

Thuau, Damien January 2012 (has links)
Thin film material properties and measurement characterisation techniques are crucial for the development of micro-electromechanical systems (MEMS) devices. Furthermore, as the technology scales down from microtechnology towards nanotechnology, nanoscale materials such as carbon nanotubes (CNTs) are required in electronic devices to overcome the limitations encountered by conventional materials at the nanoscale. The integration of CNTs into micro-electronics and material applications is expected to provide a wide range of new applications. The work presented in this thesis has contributed to the development of thin film material characterisation through research on the thermal conductivity measurement and the control of the residual stress of thin film materials used commonly in MEMS devices. In addition, the use of CNTs in micro-electronics and as filler reinforcement in composite materials applications have been investigated, leading to low resistivity CNTs interconnects and CNTs-Polyimide (PI) composites based resistive humidity sensors. In the first part of this thesis, the thermal conductivity of conductive thin films as well as the control of the residual stress arising from fabrication process in PI micro-cantilevers have been studied. A MEMS device has been developed for the thermal conductivity characterisation of conductive thin films showing good agreement with thermal conductivity of bulk material. Low energy Ar+ ion bombardment in a plasma has been used to control the residual stress present in PI cantilevers. Appropriate ion energy and exposure time have led to stress relaxation of the beams resulting in a straight PI cantilever beam. In the second part of this thesis, low resistivity CNTs interconnects have been developed using both dielectrophoresis (DEP) and Focused Ion Beam (FIB) techniques. An investigation of the effects of CNT concentration, applied voltage and frequency on the CNTs alignment between Al and Ti electrodes has resulted in the lowering of the CNTs’ resistance. The deposition of Pt contact using FIB at the CNTs-metal electrodes interface has been found to decrease the high contact resistances of the devices by four and two orders of magnitude for Al and Ti electrodes respectively. The last part of this thesis focuses on the preparation of CNTs-PI composite materials, its characterisation and its application as resistive humidity sensor. The integration of CNTs inside the PI matrix has resulted in enhancing significantly the electrical and mechanical properties of the composites. In particular, a DEP technique employed to induce CNTs alignment inside the PI matrix during curing has been attributed to play an important role in improving the composite properties and lowering the percolation threshold. In addition, the fabrication and testing of CNTs-PI resistive humidity sensors have been carried out. The sensing performance of the devices have shown to be dependent highly on the CNT concentration. Finally, the alignment of CNTs by DEP has improved the sensing properties of CNTs-PI humidity sensors and confirmed that the change of resistance in response to humidity is governed by the change of the CNTs’ resistances due to charge transfer from the water molecules to the CNTs.
8

Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

January 2012 (has links)
abstract: ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project. / Dissertation/Thesis / M.S. Electrical Engineering 2012
9

Vibration-based condition monitoring of wind turbine blades

Esu, Ozak O. January 2016 (has links)
Significant advances in wind turbine technology have increased the need for maintenance through condition monitoring. Indeed condition monitoring techniques exist and are deployed on wind turbines across Europe and America but are limited in scope. The sensors and monitoring devices used can be very expensive to deploy, further increasing costs within the wind industry. The work outlined in this thesis primarily investigates potential low-cost alternatives in the laboratory environment using vibration-based and modal testing techniques that could be used to monitor the condition of wind turbine blades. The main contributions of this thesis are: (1) the review of vibration-based condition monitoring for changing natural frequency identification; (2) the application of low-cost piezoelectric sounders with proof mass for sensing and measuring vibrations which provide information on structural health; (3) the application of low-cost miniature Micro-Electro-Mechanical Systems (MEMS) accelerometers for detecting and measuring defects in micro wind turbine blades in laboratory experiments; (4) development of an in-service calibration technique for arbitrarily positioned MEMS accelerometers on a medium-sized wind turbine blade. This allowed for easier aligning of coordinate systems and setting the accelerometer calibration values using samples taken over a period of time; (5) laboratory validation of low-cost modal analysis techniques on a medium-sized wind turbine blade; (6) mimicked ice-loading and laboratory measurement of vibration characteristics using MEMS accelerometers on a real wind turbine blade and (7) conceptualisation and systems design of a novel embedded monitoring system that can be installed at manufacture, is self-powered, has signal processing capability and can operate remotely. By applying the conclusions of this work, which demonstrates that low-cost consumer electronics specifically MEMS accelerometers can measure the vibration characteristics of wind turbine blades, the implementation and deployment of these devices can contribute towards reducing the rising costs of condition monitoring within the wind industry.
10

Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems

Bleiker, Simon J. January 2017 (has links)
Three-dimensional (3D) integration of micro- and nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology.In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world. / Tredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala. / <p>20170519</p>

Page generated in 0.0779 seconds