• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 3
  • 1
  • Tagged with
  • 28
  • 28
  • 13
  • 13
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental and numerical investigation of vaporizer tubes associated with micro gas turbines

Olivier, Andre Jacobus 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: This study is an introductory investigation into vaporizer technology as implemented in micro gas turbines. Experimental investigations are aimed at the development of expectations concerning the internal flow structure though vaporizers by generating application specific flow maps. Consolidation of these maps with other experimental data suggests that annular flow leads to increased evaporation rates. In addition, it was discovered that flow structure is affected by the injection angle and air and fuel flow rates. An investigation into the numerical modelling of vaporizers is based on two phase flow theory using a flow structure approach. The numerical behaviour is observed for parametric variations to establish the impact of assumptions. A final numerical model is formulated with empirically determined coefficients with fair correlation to experimental data. The results of this study yield recommendations towards the implementation and analysis of vaporizers with applied use in micro gas turbines. / AFRIKAANSE OPSOMMING: Hierdie studie is 'n inleidende ondersoek na verdamper tegnologie soos toegepas in mikro gasturbines. Eksperimentele ondersoeke is gerig op die ontwikkeling van kennis rakende die interne vloeistrukture deur verdampers met die bou van toepassingspesifieke vloeikaarte. Konsolidering van hierdie kaarte met verdere eksperimentele data dui daarop dat annulêre vloei lei tot verhoogde verdampingstempo’s. Daar is ook bevestig dat die vloei struktuur deur die inspuitingshoek en vloeitempo’s affekteer word. 'n Ondersoek na die numeriese modellering van verdampers is gebasseer op twee-fase vloei met 'n vloeistruktuur benadering. Die numeriese gedrag is waargeneem vir parametriese variasies om sodoende die impak van aannames te bevestig. Die numeriese model is voltooi met empiriese bepaalde koëffisiënte en lei tot goeie korrelasie met eksperimentele data. Resultate van hierdie studie lei tot aanbevelings rakende die implementering en ontleding van verdampers met spesifieke toepassing op mikro gas turbines.
2

Modular GC: A Fully Integrated Micro Gas Chromatography System

Manurkar, Shaunak Sudhir 22 September 2021 (has links)
Gas Chromatography (GC) is one of the most important and widely used tools in analytical chemistry. However, they are bulky, have a longer measurement cycle, and consume a high amount of power. Micro-Gas Chromatography (µGC) is portable and energy-efficient, which allows onsite, real-time biological, forensic, and environmental analyses. This thesis presents a ready-to-deploy implementation of microfabricated gas chromatography (µGC) system capable of separating complex samples. We describe robust, modular, and scalable hardware and software architecture based on Real-Time Operating System (RTOS) and Python Graphical User Interface (GUI) integrated with various microfabricated devices to realize a fully functional µGC system. A sample heater for headspace injection, microfabricated separation column (µSC), a Photoionization Detector (PI-D), and a flow controller unit are integrated with the modular hardware and software to realize a fully functional Vacuum Outlet µGC system. We have designed a novel auto-calibration method for temperature calibration of the microfabricated devices which does not require changing the electronic circuitry or reprogramming the device. The vacuum outlet µGC setup is tested with various mixture of analytes. For these experiments, an average relative standard deviation (RSD) for retention time repeatability of 2.5% is achieved. Data processing techniques for raw chromatograms, including baseline correction and peak detection, are implemented on a microcontroller board and tested extensively as a part of this work. A novel algorithm for multidimensional analysis for the identification of co-eluting compounds in complex samples is implemented with a prediction accuracy of 94%. / Master of Science / Toxic volatile organic compounds (VOCs) such as benzene and toluene found in gasoline and xylene used in ink, rubber, and leather industries are of concern as they are present at elevated concentrations due to their higher vapor pressure. Sufficient exposure to these toxicants, even at lower concentrations like 100 parts-per-billion-volume (ppbv), may cause adverse health effects. Gas Chromatography (GC) has been the established method for assessing the presence and concentration of VOCs in the environment. Traditional GC systems are bulky, power-hungry, expensive, and require expert supervision for analysis. Recent research in microelectromechanical systems (MEMS) has reduced the size of the GC components, also called micro-GC (µGC), while improving the performance. The majority of the research and development of µGC is aimed at advancing microfabricated components such as preconcentrators, separation columns, and gas detectors. However, the integration of these different components is an important topic that requires more investigation. In this thesis, we present a robust and scalable software and hardware architecture that can be used to develop a portable and modular µGC system. The thesis discusses different experiments to calibrate various microfabricated devices, which are then used to build a fully modular µGC system. We show the separation capacity of the modular µGC system by passing complex compounds like kerosene and diesel. As the chromatogram from the µGC system has noise, the second part of the thesis explores data analysis techniques such as baseline correction, peak detection. These data analysis tools are used to filter the noise, detect relevant peaks in the chromatograms, and identify the compounds in a complex sample.
3

Zebra GC: A Fully Integrated Micro Gas Chromatography System

Garg, Apoorva 29 August 2014 (has links)
A ready-to-deploy implementation of microfabricated gas chromatography (microGC) system characterized for detecting hazardous air pollutants (HAPs) at parts-per-billion (ppb) concentrations in complex mixtures has been described. A microfabricated preconcentrator (microPC), a MEMS separation column with on-chip thermal conductivity detector (microSC-TCD), the flow controller unit, and all the necessary flow and thermal management as well as user interface circuitry are integrated to realize the fully functional microGC system. The work reports extensive characterization of microPC, microSC and micro]TCD for target analytes: benzene, toluene, tetrachloroethylene, chlorobenzene, ethylbenzene, and p-xylene. Limit of Detection (LOD) of ~1 ng was achieved, which corresponds to 10 min sampling time at a flow rate of 1 mL/min for analyte present at ~25 ppbv concentration. An innovative method for generating very sharp injection plugs from the microPC even in the presence of flow sensitive detectors like micro]TCD is described. A one-to-one comparison between microGC system and conventional Automated Thermal Desorption-Gas Chromatograph-Flame Ionization Detector (ATD GC-FID) system for real gasoline samples in simulated car refueling scenario is reported. / Master of Science
4

Portable Micro-Gas Chromatography with Multidimensional Compound Identification Analysis

Sharma, Arjun 16 March 2023 (has links)
Gas Chromatography (GC) is an analytical technique in the chemistry field widely used to separate compounds present in a sample mixture. Conventional GC systems are an extremely versatile and powerful tool to perform complex separations. However, these systems come with the cost of being bulky and requiring a high amount of power for operation. With considerable research for over 40 years, the advent of Micro-Gas Chromatography (µGC) made it possible for miniaturized, compact, low-power, and field portable GC systems. This thesis presents a portable µGC system that enables real-time analysis of complex compound separations, made possible with the use of multiple separation columns and a novel multidimensional compound identification algorithm. The system architecture and the software design with multiple features enabling portability of the µGC system are discussed. A set of microfabricated separation columns (µSCs) and photoionization detectors (PIDs) are integrated to realize a fully functional µGC system that is tested with different types of complex compound mixtures. An in-depth analysis of processing the output chromatograms obtained from the setup for signal filtering and peak detection is described in this thesis. A multidimensional analysis for compound identification in complex mixtures is presented. / Master of Science / Volatile organic compounds (VOCs) are generally chemicals that have high vapor pressure and low boiling points used and produced in the processing of petroleum products, paint, refrigerants, pharmaceuticals, and adhesives. VOCs are emitted as gases from certain solids or liquids, some of which may have short- and long-term adverse health effects even with minute exposure. Gas Chromatography (GC) is a common analytical technique used to detect, identify, and quantify VOCs in the environment, and conventional GC Systems have been utilized for this purpose. The separation of compounds occurs inside an analytical column that has selective interaction between the column and the analytes passing through. However, these systems are expensive, bulky, consume high power, and require expertise to operate. Recently, advancements in the Microelectromechanical systems (MEMS) field has paved the way to create Micro-Gas Chromatography (µGC) systems with improved performance when compared to traditional systems. Active research is ongoing to improve the portability of µGC systems for reliable and quick on-field analysis. In this thesis, we present a µGC system that has a robust and scalable design that allows the development of a portable µGC system. The compound separation of complex mixtures is showcased using the portable µGC system setup. The output chromatograms obtained from the µGC system are pre-processed, which involves noise filtering and peak detection, followed by an analysis using a multidimensional compound identification algorithm.
5

PID Auto-Tuning and Control System for Heaters in μGC Systems

Gupta, Poonam 31 March 2023 (has links)
Micro gas chromatography (μGC) system is a miniaturized and portable version of the conventional GC system, suitable for various applications such as healthcare and environmental analysis. The process of gas chromatography requires precise temperature control for the micro-fabricated preconcentrators and separation columns used since temperature changes directly affect retention time. Proportional Integral and Derivative (PID) controllers provide reliable temperature control and can be tuned to obtain the desired response. The conventional method of tuning the PID control parameters by trial and error is a tedious process and time-consuming process. This thesis aims to develop a PID auto-tuning and control system for auto-tuning microfabricated heaters in modular μGC systems. The developed system is based on the Ziegler Nichols rule-based PID tuning method for closed-loop systems, which uses the relay response of the micro-heater to calculate the PID tuning parameters. The system also includes an analysis system to verify the performance of the PID-tuned values and a tuning system where the PID values can be further tuned to obtain more precise control for the heaters. The aim of developing this system is to reduce the effective tuning time for heaters while satisfying the control requirements. In this thesis, we discuss the tuning methodology and the implementation of the PID tuning and control system, followed by a performance evaluation of the heaters tuned using the proposed system is discussed. / Master of Science / Gas chromatography (GC) is an established technique used for the qualitative and quantitative analysis of compounds present in a mixture. Micro-gas chromatography (μGC) systems are miniaturized versions of conventional GC systems. They are portable, energy-efficient, and facilitate on-site analysis in real-time, which is suitable for applications such as health care, forensics, and environmental analysis, requiring in-field analysis. GC is based on the principle that components of a gaseous mixture, when passed through a heated column coated with a stationary phase, separate out based on their extent of interaction with the stationary phase. The temperature control needs to be precise since it directly affects the process. PID control is the most common and reliable method for temperature control. It can be tuned to obtain the desired response, which can, however, be a tedious process. This thesis aims to develop a PID auto-tuning and control system for μ-fabricated heaters in μGC systems. As a part of this thesis, a system facilitating faster tuning of PID parameters for a given heater using the Ziegler Nichols closed-loop tuning method is developed. It uses the relay response of the micro-heater to determine the tuning value. The obtained PID values can be evaluated using the analysis system developed as a part of the system and can be further fine-tuned using the provided system to obtain the desired response. As a part of this thesis, we first discuss the development of the PID tuning and control system, after which the performance of the tuned values is evaluated for two micro-heaters.
6

MicroGC: Of Detectors and their Integration

Sreedharan Nair, Shree Narayanan 29 April 2014 (has links)
Gaseous phase is a critical state of matter around us. It mediates between the solid crust on earth and inter-stellar vacuum. Apart from the atmosphere surrounding us where compounds are present, natively, in a gaseous phase, they are also trapped within soil and dissolved in oceanic water. Further, those that are less volatile do enter the gaseous phase at high temperatures. It is this gaseous phase that we inhale every second. It is thus critical that we possess the tools to analyze a mixture of gaseous compounds. One such method is to separate the components in time and then identify, primarily based on the retention times, also known as gas chromatography. This research focuses on the development of gas detectors and their integration, in different styles, primarily for gas chromatography. Utilizing fabrication techniques used in semiconductor industry and exploiting scaling laws we investigate the ability to improve on conventional gas separation and identification techniques. Specifically, we have provided a new spin to the age-old thermal conductivity detector enabling its monolithic integration with a separation column. A reference-less, two-port integration architecture and a one-of-its-kind released resistor on glass are some of its salient features. The operation of this integrated device with a preconcentrator and in a matrix array was investigated. The more unique contribution of this research lies in the innovative discharge ionization detector. An ultra-low power, sensitive, easy to fabricate detector, it requires more investigation for a thorough understanding and will likely mature to replace the thermal conductivity detector, as the detector of choice for universal detection, in time to come. / Ph. D.
7

Microfluidic Columns with Nanotechnology-Enabled Stationary Phases for Gas Chromatography

Shakeel, Hamza 12 March 2015 (has links)
Advances in micro-electro-mechanical-systems (MEMS) along with nanotechnology based methods have enabled the miniaturization of analytical chemistry instrumentation. The broader aim is to provide a portable, low-cost, and low-power platform for the real-time detection and identification of organic compounds in a wide variety of applications. A benchtop gas chromatography (GC) system is considered a gold standard for chemical analysis by analytical chemists. Similarly, miniaturization of key GC components (preconcentrator, separation column, detector, and pumps) using micro- and nanotechnology based techniques is an on-going research field. This dissertation specifically deals with the design, fabrication, coating, and chromatographic testing of microfabricated separation columns for GC. This work can be broadly categorized into three research areas: design and development of new column designs, introduction of new stationary phases and the development of novel fabrication methodologies for integrating functionalized thin-film into microchannels for chromatographic separations. As a part of this research, two high performance new micro column designs namely width-modulated and high-density semi-packed columns are introduced for the first time. Similarly, two new types of functionalized stationary phases are also demonstrated i.e. a highly stable and homogenous silica nanoparticles coating deposited using a layer-by-layer self-assembly scheme and a highly conformal functionalized thin aluminum oxide film deposited using atomic layer deposition. Moreover, novel thin-film patterning methods using different microfabrication technologies are also demonstrated for high-aspect ratio multicapillary and semi-packed columns. / Ph. D.
8

Design of a centrifugal compressor impeller for micro gas turbine application

Van der Merwe, Bosman Botha 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The use of micro gas turbines (MGTs) for the propulsion of unmanned aerial vehicles (UAVs) has become an industry standard. MGTs offer better performance vs. weight than similar sized, internal combustion engines. The front component of an MGT serves the purpose of compressing air, which is subsequently mixed with a fuel and ignited to both power the turbine which drives the compressor, and to produce thrust. Centrifugal compressors are typically used because of the high pressure ratios they deliver per stage. The purpose of this project was to design a centrifugal compressor impeller, and to devise a methodology and the tools with which to perform the aforementioned. A compressor impeller adhering to specific performance and dimensional requirements was designed. The new compressor was designed using a mean-line performance calculation code. The use of the code was vindicated through comparison with the results from a benchmark study. This comparison included mean-line, Computational Fluid Dynamic (CFD), and experimental results: the new design mean-line results were compared to the results of CFD simulations performed on the same design. The new design was optimised using an Artificial Neural Network (ANN) and Genetic Algorithm. Prior to and during optimisation, the ANN was trained using a database of sample CFD calculations. A Finite Element Analysis (FEA) was done on the optimised impeller geometry to ensure that failure would not occur during operation. According to CFD results, the final design delivered good performance at the design speed with regards to pressure ratio, efficiency, and stall margin. The mechanical stresses experienced during operation were also within limits. Experimental results showed good agreement with CFD results of the optimised impeller. Keywords: micro gas turbine, centrifugal compressor, impeller, CFD, experimental, optimisation, FEA. / AFRIKAANSE OPSOMMING: Die gebruik van mikrogasturbines vir die aandrywing van onbemande vliegtuie het ‟n standaard geword in die industrie. Mikrogasturbines bied beter werkverrigting teen gewig as binnebrandenjins van soortgelyke grote. Hierdie eienskap verseker dat mikrogasturbines as aandryfmotors vir onbemande vliegtuie uiters voordelig is. Die voorste komponent van ‟n mikrogasturbine dien om lug saam te pers, wat dan met brandstof gemeng en daarna aan die brand gesteek word om krag aan die kompressor en stukrag te voorsien. Sentrifugaalkompressors word tipies gebruik as gevolg van die hoë drukverhoudings wat hierdie komponente per stadium kan lewer. Die doel van hierdie projek was om ‟n sentrifugaalkompressor te ontwerp, en ‟n metode en die hulpmiddels te ontwikkel om laasgenoemde uit te voer. ‟n Kompressor rotor wat voldoen het aan sekere werkverrigtings en dimensionele vereistes is ontwerp. Die nuwe kompressor rotor is met behulp van 1-dimensionele werkverrigting-berekeningskode ontwerp. Die berekeningsakkuraatheid van die kode en díé van ‟n kommersiële Berekenings Vloeidinamika pakket is bevestig deur die berekende resultate te vergelyk met die van eksperimente. Die nuwe rotor is gevolglik deur middel van ‟n Kunsmatige Neurale Netwerk en Genetiese Algoritme geoptimeer. Die Kunsmatige Neurale Netwerk is voor en gedurende optimering deur Berekenings Vloeidinamika simulasies opgelei. Die meganiese sterkte van die geoptimeerde rotor is nagegaan met behulp van ‟n Eindige Element Analise. Dit is gedoen om te verseker dat die rotor nie sal faal by die bedryfspunt nie. Berekenings Vloeidinamika resultate het getoon dat die finale rotor ontwerp ‟n goeie werkverrigting lewer by die ontwerpspoed, met betrekking tot drukverhouding, bennutingsgraad, en stakingsmarge. Eksperimentele resultate het goeie ooreenstemming met die Berekenings Vloeidinamika resultate van die geoptimeerde rotor getoon. Sleutelwoorde: mikrogasturbine, sentrifigaalkompressor, rotor, Berekenings Vloeidinamika, eksperimenteel, optimering, Eindige Element Analise.
9

Performance evaluation of a micro gas turbine centrifugal compressor diffuser

Krige, David Schabort 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Micro gas turbines used in the aerospace industry require high performance with a compact frontal area. These micro gas turbines are often considered unattractive and at times impractical due to their poor fuel consumption and low cycle efficiency. This led to a joint effort to investigate and analyze the components of a particular micro gas turbine to determine potential geometry and performance improvements. The focus of this investigation is the radial vaned diffuser which forms part of a centrifugal compressor. The size of the diffuser is highly constrained by the compact gas turbine diameter. The micro gas turbine under consideration is the BMT 120 KS. The radial vaned diffuser is analyzed by means of 1-D and 3-D (CFD) analyses using CompAero and FINETM/Turbo respectively. The aim is to design a diffuser that maximizes the total-to-static pressure recovery and mass flow rate through the compressor with minimal flow losses. An experimental test facility was constructed and the numerical computations were validated against the experimental data. Three new diffusers were designed, each with a different vane geometry. The static-to-static pressure ratio over the radial diffuser was improved from 1.39 to 1.44 at a rotational speed of 120 krpm. The static pressure recovery coefficient was improved from 0.48 to 0.73 with a reduction in absolute Mach number from 0.47 to 0.22 at the radial diffuser discharge. / AFRIKAANSE OPSOMMING: Mikro-gasturbines wat in die lugvaart industrie gebruik word, vereis ‘n hoë werkverrigting met ‘n kompakte frontale area. Hierdie gasturbines word menigmaal onaantreklik geag weens swak brandstofverbruik en n lae siklus effektiewiteit. Dit het gelei tot ‘n gesamentlike projek om elke komponent van ‘n spesifieke mikro-gasturbine te analiseer en te verbeter. Die fokus van dié ondersoek is die radiale lem diffusor wat deel vorm van ‘n sentrifugaalkompressor. Die deursnee van die diffusor word deur die kompakte gasturbine diameter beperk. Die mikro gasturbine wat ondersoek word is die BMT 120 KS. Die radiale lem diffusor word geanaliseer deur middel van 1-D en 3-D (BVD) berekeninge met behulp van CompAero en FINETM/Turbo onderskeidelik. Die doelwit is om ‘n diffusor te ontwerp met ‘n verhoogde massavloei en drukverhouding oor die kompressor. ‘n Eksperimentele toetsfasiliteit is ingerig om toetse uit te voer en word gebruik om numeriese berekeninge te bevestig. Die staties-tot-stasiese drukstyging oor die radiale diffusor is verbeter van 1.39 tot 1.44 by ‘n omwentelingspoed van 120 kopm. Die statiese drukherwinningskoeffisiënt is verbeter van 0.48 tot 0.73 met ‘n vermindering in die absolute Machgetal vanaf 0.47 tot 0.22 by die radiale diffusor uitlaat.
10

Application of sputtering to micro gas chromatography : a novel collective stationary phase disposition technique for micro gas chromatography columns fabrication : feasibility, evaluations and oilfield applications.

Haudebourg, Raphael 05 February 2014 (has links) (PDF)
A totally new solid stationary phase deposition technique for micro machined gas chromatography (GC) columns fabrication was proposed: to overcome the limitations of conventional liquid (or occasionally solid) stationary phases in terms of very volatile compounds retention and/or clean room batch production, an approach consisting of the collective direct deposition of the adsorbent in micro columns channels by sputtering was performed. The process was fully compatible with clean room fabrication flow and industry-ready, with very good precision results. Silica, alumina, graphite and magnesia were proven able to separate volatile hydrocarbons. Various types of columns (structure, stationary phase) were fabricated in the form of 2x2 cm² silicon-Pyrex chips, and their thermodynamic and kinetic evaluations were reported. Retentions were observed to increase from magnesia to graphite through alumina and silica and with phase ratio decrease, as expected; very satisfying efficiencies were obtained: more than 5700 plates, and 250 µm-high plates. The possibility to use such columns for fast in-situ and autonomous monitoring of light hydrocarbons in oilfield environments was demonstrated by the implementation of a chip temperature-programming system and various versatility tests (high temperatures, carrier gas, humidity): a complete C1-C9 linear alkanes separation was performed in less than 15 seconds, as well as complex mixtures fast separations (isomers, unsaturated), and an industrial confidential application was developed and patented. Therefore, sputter-deposited stationary phase micro columns opened numerous perspectives for the developments of miniaturized GC apparatuses.

Page generated in 0.0413 seconds