• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 4
  • Tagged with
  • 36
  • 36
  • 13
  • 13
  • 12
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro- et nano-usinage par laser à impulsions ultracourtes : amélioration de procédés par des méthodes tout optique

Landon, Sébastien 21 October 2011 (has links) (PDF)
La technique d'usinage par impulsions laser femtosecondes possède de nombreux avantages du fait des spécificités physique de l'interaction laser/matière en mode ultra-bref et est donc susceptible d'intéresser le monde industriel. Néanmoins elle présente aussi certaines limitations, principalement en terme de flexibilité et de productivité, limitant l'accès à ce marché. Pour repousser ces limites, nous proposons d'adjoindre des techniques de contrôle du faisceau, à la fois en taille, et plus généralement en forme, exploités par ailleurs dans d'autres domaines scientifiques (pincettes optiques notamment). Ces techniques reposent sur l'utilisation de modulateurs spatiaux de lumière (SLM). Deux solutions sont proposées : la modulation d'amplitude en configuration d'imagerie, et la modulation de phase pure en configuration de Fourier. Le formalisme, les différentes problématiques et la mise en oeuvre de ces deux techniques au sein d'une station de travail prototype que nous avons développée sont présentés. Enfin, nous mettons en évidence le gain apporté par ces techniques sur des problématiques concrètes, tels que l'usinage de réseaux résonant à l'échelle nanométrique, la réduction du temps d'usinage de ces réseaux (ou d'autres motifs), et l'amélioration de la qualité d'usinage de rainures
2

Controlling and upscaling laser induced surface morphology : from tens of microns to tens of nanometres / Etude et avancées de morphologie de surface induite par laser : de dizaines de micromètres aux dizaines de nanomètres

Frangelakis, Fotios 14 February 2019 (has links)
L’Industrie actuelle demande des produits à haute valeur ajoutée offrant des nouvelles fonctions à moindre coût. Parmi les fonctions on peut citer la coloration de surface, le noircissement de surface, la réduction des frottements, la génération de surface anti-réflexion, anti-bactérienne, superhydrophobe ou anti-formation de glace. Les surfaces fonctionnelles présentes dans la nature nous indiquent que ces propriétés uniques sont possibles par des texturations de surface à l’échelle micro et nanométrique adéquates.Parallèlement à cela, la technologie laser révolutionne le champ des possibles en termes de texturation de surface et permet de reproduire ces fonctions inspirées du monde du vivant en modifiant la morphologie et la chimie de surface. Néanmoins, le développement et le déploiement de telles techniques de texturation laser au niveau industriel nécessite la levée de trois verrous. Le premier est de connecter les propriétés macroscopiques (couleur, résistance mécanique, stabilité chimique, vieillissement) et la morphologie de surface aux échelles nano et microscopiques. Le second d’acquérir une parfaite maîtrise de la morphologie de surface à ces échelles. Le troisième est la transposition du procédé développé en laboratoire en procédé industriel adapté aux traitements de grandes surfaces avec des temps de cycles les plus courts possibles. Nous avons étudié plusieurs techniques de texturation de surface à l’échelle submicronique par laser femtoseconde. Ainsi des « ripples » de quelques dizaines de nanomètres ont être réalisées par laser UV. L’irradiation avec double impulsion apporte une capacité supplémentaire dans le contrôle de la morphologie de surface finale. Différents types de structures, avec différentes symétries, ont ainsi été produites en jouant sur le délai entre les deux impulsions. Des structures LIPSS homogènes triangulaires ou carrées ont été obtenues pour des délais inférieurs à 5 ps et 500 ps respectivement. Des paramètres opératoires, en particulier la fluence et la polarisation, ont été identifiés comme jouant un rôle majeur dans les caractéristiques de la morphologie de surface finale. Des expériences complémentaires ont montré que des résultats similaires peuvent être obtenus en utilisant des cristaux biréfringents pour générer des délais courts. Nous avons également exploré la possibilité d’utiliser des trains d’impulsions uniques pour produire des texturations de surface de dimensions caractéristiques supérieures allant de quelques microns à plusieurs dizaines de microns en faisant varier de manière systématique la fluence, la dose énergétique et le taux de répétition du laser. La comparaison de résultats expérimentaux avec ceux issus de simulation nous avons mis en évidence le rôle majeur de l’accumulation thermique sur les dimensions caractéristiques des structures générées par laser. Par ailleurs, nous avons démontré la capacité du procédé à produire de texturations sub-longueurs d’onde, homogènes, sur des surfaces supérieures à 1 cm², avec des lasers ayant des taux de répétitions allant jusqu’à 10 MHz et des systèmes de positionnement innovants. Des nano-rugosités de surface ainsi produites affichent des propriétés de super hydrophobicité. A titre d’exemple, nous avons atteint un temps de texturation de l’ordre de 1 min/cm², soit 60 fois inférieurs à ce que nous obtenions en début des travaux. Enfin, nous avons démontré un temps de 9 s/cm² pour le noircissement de surface.Ces travaux de recherche, mettant à profit des sources laser et des équipements de déflection optique de dernière génération, apportent une contribution significative dans la compréhension des mécanismes d’une part, et dans la capacité à contrôler et à produire de telles texturations sur des grandes surfaces d’autre part. Ils devraient favoriser une dissémination rapide de ces technologies de texturation laser dans l’industrie. / Current industrial markets demand highly value-added products offering new features at a low-cost. Among the most desired functionalities are surface colouring and blackening, anti-icing, anti-biofouling, wear reduction and anti-reflectivity. Laser surface processing holds a virtually endless potential in surface functionalization since it can generate versatile surface properties by modifying surface morphology and chemistry. Nevertheless, developing functional surfaces for implementation in the industry requires action on three levels. The first is to connect the macro-scale surface properties (colour, mechanical resistance, chemical stability, ageing) and the micro & nano-scale morphology. The second is to increase the level of control over the laser induced morphology in the near micron and submicron scale. The third is to upscale the lab-developed process both in terms of processed area and cycle time. Functional textures found in nature can be used as a guideline for connecting the surface texture with the surface property. It is well established that different textures can enable different functionalities. Nevertheless, the level of control of the laser induced morphology has to be improved significantly in order to allow one to mimic nature’s examples. Increase of control requires an in-deep understanding of the physical mechanisms that lead to nanostructure formation. To this end, we carry out a comprehensive parametric study of fs processing on stainless steel. The impact of wavelength, overlap, fluence, dose, repetition rate, polarization and interpulse delay in the induced morphology was investigated.We investigate several techniques to achieve controlled laser structuring in the submicron regime. Ripples of a few tens of nanometres were obtained with a UV laser. Double pulses were employed to further control the submicron structures. Structures of different size and symmetry were obtained in different delays underlining the key role of the interpulse delay (Δτ). Homogeneous triangular and square 2D-LIPSS were obtained for Δτ smaller than 5 ps and 500 ps, respectively. Process parameters and particularly fluence and polarization were found to play also a role in the laser induced feature characteristics. In a complementary set of experiments, we show that similar results can be obtained for small delays with a robust setup of birefringent crystals. In the above micron regime, trains of single pulses were employed for controlling the surface morphology. Fluence, dose and repetition rate, were varied to show a systematic variation of spikes in the range of tens of micrometers. Combining our experimental results with simulation data we underline the key role of heat accumulation on the structures size. Finally, we proposed an upscaling strategy showing the possibility to exploit repetition rates up to 10 MHz for laser texturing.In the upscaling part, areas much larger than the spot size were textured homogenously using high repetition rate laser and innovative laser positioning systems. Nanometric ripples induced by UV laser act as a subwavelength grating. Laser induced nano roughness exhibits superhydrophobic properties. Uniform distribution of well-defined, sub-wavelength, 2D-LIPSS was successfully generated over ~1 cm2. The final surface exhibits multiple axis iridescence giving a holographic effect. Employing a 10 MHz laser surface was textured at a rate of ~ 1 min/cm2 almost 60 times faster compared to our starting point. Lastly, surface blackening was achieved at a rate of ~ 9 sec/cm2.In conclusion, valuable data were provided both in surface functionalization, in understanding and controlling of laser induced structuring and in upscaling a lab developed process. We believe that our results open the way for exploiting fs laser texturing in everyday applications employing up to date laser sources and positioning systems.
3

Conception et Réalisation de Micro-capteurs de Force à base de Jauges Piézorésistives pour la Caractérisation Mécanique d'Assemblages Cellulaires en Milieu Liquide

Bureau, Jean-Baptiste 15 December 2006 (has links) (PDF)
Les microtechnologies permettent aujourd'hui de réaliser différents types de capteurs dont un domaine d'application émergeant est la caractérisation électrique et mécanique des cellules biologiques pour la détection précoce de pathologies. <br /><br />Dans ce contexte, le but du travail présenté est de proposer un capteur de force dont l'axe sensible se trouve dans le plan, et dont l'information de sortie soit une grandeur électrique. Les structures conçues mettent ainsi à profit l'effet piezo-résistif au sein de jauges en silicium, dont l'architecture a été spécialement mise au point pour obtenir des sensibilités de l'ordre de 10 N-1 sur cet axe.<br /><br />La modélisation et l'optimisation des performances ont conduit à la fabrication de jauges d'architecture compacte et originale réalisées sur deux niveaux de polysilicium implanté de bore, et encapsulé dans trois couches de nitrure peu contraint, le tout implémenté sur une couche de SOI. Le procédé de fabrication a été spécialement mis au point. Par ailleurs, l'influence de l'erreur d'alignement entre la jauge et la poutre d'épreuve a été étudiée et vérifiée lors des tests.<br /><br />Les sensibilités obtenues avec des jauges de 170 ?m de long et 6,5 ?m de large sont de l'ordre de 30.10-6 ?N-1. Les applications mettant en œuvre ce type de dispositif sont nombreuses et les performances, comparables aux leviers AFM, font de cette configuration de jauge une structure à fort potentiel pour être utilisée pour d'autres applications.
4

Conception et étude de micro-cavités opto-mécaniques accordables sur InP pour le démultiplexage en longueur d'onde

Le Dantec, Ronan Benyattou, Taha. Bru-Chevallier, Catherine January 1999 (has links)
Thèse de doctorat : Sciences et techniques : Villeurbanne, INSA : 1999. / Titre provenant de l'écran-titre. Bibliogr. 176-182.
5

Mise en forme de faisceaux de lasers de puissance dans le proche infrarouge par éléments diffractifs

Neiss, Estelle Fontaine, Joël. January 2008 (has links) (PDF)
Thèse doctorat : Optique et Laser : Strasbourg 1 : 2007. / Titre provenant de l'écran-titre. Bibliogr. 5 p.
6

Stabilisation de dommages laser et de défauts sur composants optiques de silice par procédés laser CO2 / Mitigation of laser damages and defects on fused silica optics by CO2 laser processing

Doualle, Thomas 28 November 2016 (has links)
Une des limitations du fonctionnement des grandes chaines lasers de puissance telle que le Laser MegaJoule, est la problématique de l’endommagement laser des composants optiques. Différents phénomènes physiques qui dépendent à la fois des propriétés des matériaux, de leurs conditions de fabrication/ préparation et des paramètres d’irradiation laser peuvent conduire à un amorçage de dommages sur la surface ou dans le volume, qui vont croître lors d’irradiations successives. Ce phénomène limite la montée en puissance, affecte la durée de vie des composants optiques et le coût de maintenance des chaînes laser. Il peut également être à l’origine de graves problèmes de sécurité. Pour remédier à cette croissance des dommages et augmenter la durée de vie des composants en silice, un procédé laser dit de «stabilisation » est étudié dans le cadre de cette thèse, l’objectif étant de traiter les dommages pour arrêter leur croissance sous tirs répétés afin de recycler les optiques endommagées. Ce processus consiste en une fusion, suivie d’une évaporation locale, par dépôt d’énergie localisé par un faisceau laser CO2, de la zone fracturée de silice. Nous nous sommes intéressés particulièrement à la stabilisation de dommages laser sur silice par un procédé de micro-usinage par laser CO2 dans le but de traiter des dommages de dimensions millimétriques. Cette technique est basée sur une micro-ablation rapide de la silice durant laquelle le faisceau laser est balayé à la surface du composant afin de former un cratère de forme ajustable (typiquement conique) englobant le site endommagé. Un banc d’expérimentations a ainsi été mis en place à l’Institut Fresnel pour développer et étudier ce procédé. Différents travaux numériques et expérimentaux ont également été menés pour valider et optimiser la technique. Nos travaux ont montré l’efficacité de ce procédé de micro-usinage par laser CO2 pour arrêter la croissance de dommages de plusieurs centaines de microns de largeur et de profondeur. Pour parvenir à cet objectif nous nous sommes appuyés sur la modélisation des phénomènes physiques mis en jeu lors des expériences de stabilisation en utilisant le logiciel de simulation multi-physique COMSOL. D’une part, le modèle thermique, développé au cours de cette thèse, permet de calculer la distribution de température dans le matériau pendant le tir laser avec ou sans mouvement du faisceau. Combinées à une approche thermodynamique, ces simulations thermiques permettent de décrire les transformations de la silice lors de l’irradiation afin de prédire la morphologie des cratères formés dans le verre. D’autre part, la partie mécanique du modèle permet de simuler la position et la valeur des contraintes résiduelles, générées dans le matériau autour du cratère CO2, lors de l’élévation de température suivie du refroidissement rapide. D’autres expériences concernant le traitement de fractures liées au polissage, ou des défauts de fabrication de réseaux de silice sont également traités dans ce manuscrit. / One limitation of the operation of large power lasers chains such as Laser MegaJoule, is the issue of laser damage of optical components. Different physical phenomena which depend on both the properties of materials, their conditions of manufacture / preparation and laser irradiation parameters can lead to damage initiation on the surface or in the volume, which will grow under successive irradiation. This effect limits the output power, affects the lifetime of the optical components and the maintenance cost of the laser. It can also cause serious safety problems. To address this issue and increase the lifetime of fused silica components, a laser process called "stabilization" is studied in this thesis, the aim being to treat the damage sites to stop their growth under repeated pulses for recycling damaged optics. This process consists of melting, followed by local evaporation by localized energy deposition by a CO2 laser beam of the damage site. We focused particularly on the stabilization of silica components by a micromachining process using a CO2 laser in order to treat millimeter size damages. This technique is based on fast micro-ablation of the silica during which the laser beam is scanned on the component surface to form an adjustable form of crater (typically conical) including the damaged site. A bench of experiments has been set up at the Fresnel Institute to develop and study this process. Various numerical and experimental works were also conducted to validate and optimize the technique. Our work has shown the efficiency of this micro-machining process by CO2 laser to stop the growth of damage to several hundred microns wide and deep. To achieve this goal we relied on modeling of physical phenomena involved in stabilization experiments using the COMSOL Multiphysics simulation software. First, the thermal model developed in this thesis is used to calculate the temperature distribution in the material during laser irradiation with or without movement of the beam. Combined with a thermodynamic approach, these thermal simulations can describe the transformation of silica during irradiation and predict the morphology of craters formed in the glass. Secondly, the mechanical part of the model can simulate the position and value of residual stress generated in the material around the crater after the temperature rise followed by rapid cooling. Other experiments on the treatment of fractures related to polishing on silica surfaces, or manufacturing defects on silica gratings are covered in this manuscript.
7

Expérimentation et modélisation de la micro-coupe pour une application au micro-fraisage / Experimentation and modelling of micro-cutting for micro-milling application

Piquard, Romain 03 November 2016 (has links)
Les procédés de micro-fabrication connaissent actuellement une croissance importante dans les applications industrielles et pour des secteurs majeurs. Parmi les techniques d’usinage en micro-fabrication, le micro-fraisage est sans doute le plus polyvalent que ce soit en termes de matériau usiné ou de géométrie obtenue. La fabrication de micro-fraises est encore limitée par un certain nombre de paramètres (comme le rayon d’acuité d’arête) et demande alors à être optimisée. L’approche utilisée consistant à reproduire à petite échelle ce qui se fait de mieux à une échelle conventionnelle n’est alors plus forcément adaptée. Il en résulte que le micro-fraisage est un procédé encore mal maîtrisé (usure prématurée de l’outil, bris d’outil, trajectoire non maîtrisée, bavures…).L’objectif de la thèse est donc de comprendre les mécanismes mis en jeu lors de l’enlèvement de matière en micro-usinage et d’en établir un modèle permettant de prédire les efforts de coupe selon les conditions choisies et qui permettra par la suite de faciliter l’optimisation de la géométrie des outils coupantDans un premier temps, une étude expérimentale s’attache à observer la micro-coupe élémentaire d’un acier dur à l’aide de dispositifs réalisés dans le cadre de ces travaux. Un premier dispositif permet de mesurer les efforts d’usinage en micro-coupe élémentaire et un deuxième dispositif innovant permet d’étudier la formation du copeau par coupe interrompue.Par la suite, une démarche de modélisation de la micro-coupe élémentaire est proposée en complément de l’étude expérimentale. Une approche par loi de coupe basée sur les résultats des essais de micro-coupe élémentaire permet de modéliser les efforts d’usinage. En complément, des simulations numériques utilisant la méthode SPH donnent aussi des informations intéressantes sur la formation du copeau, notamment au niveau des zones de déformation.Enfin la loi de coupe associée à un modèle géométrique du micro-fraisage permet de prédire les efforts de coupe lors de l’usinage du même acier. Le modèle géométrique basé sur des travaux précédents a été complété pour prendre en compte la flexion d’outil ainsi que le faux-rond. Ce faux-rond est mesuré directement sur la machine à l’aide d’un moyen d’observation spécialement développé. Les résultats obtenus montrent une concordance entre les efforts expérimentaux et les efforts prédits. / Micro-manufacturing processes are undergoing a significant growth in industrial applications and in a number of major sectors. Among the micro-machining techniques, micro-milling is probably the most versatile both in terms of machined material and in terms geometrical achievability. However, micro-end-mill manufacturing is still limited by some parameters (such as cutting edge radius) and needs improvement. The top-down approach used to reproduce what is best from conventional scale to micro-scale is not necessarily suitable. As a result, micro-milling is still a poorly controlled process (tool wear, tool breakage, path control, burrs...).The aim of the thesis is to understand the mechanisms occurring during the material removal with micro-cutting and to propose a model to predict cutting forces according to cutting conditions, which will then make the optimization of micro-end-mills geometry easier.First, an experimental study is used to observe the elementary micro-cutting operation of a hardened tool steel using specially designed devices. A first device is used to measure cutting forces in elementary micro-cutting and a second innovative device is used to study chip formation by quick-stop tests.Then, modelling approaches of elementary micro-cutting are proposed to complete the experimental study. A cutting law approach based on the results of the elementary micro-cutting tests allows the cutting forces to be modelled. In addition, numerical simulations using the SPH method investigate chip formation and particularly deformation and shear zones.Finally, the proposed cutting law combined with a micro-milling geometric model allows the prediction of cutting forces when micro-milling the same hardened tool steel. The geometric model based on previous work has been completed to consider static tool deflection and run-out. This run-out is measured directly on the machine using a specially developed device. The results obtained show a good correlation between experimental and predicted forces.
8

Etude des phénomènes d'absorption laser en régime femtoseconde pour l'ablation de matériaux diélectriques / Femtosecond laser pulse absorption in dielectric materials for ablation

Lebugle, Maxime 11 December 2013 (has links)
Le micro-usinage de matériaux transparents est aujourd’hui un sujet d’intérêt mondial en recherche appliquée. L’emploi de lasers femtoseconde permet la micro-fabrication de composants optiques et de verres intelligents, ou la réalisation de cellules photovoltaïques. Dans ce contexte, cette thèse expérimentale se concentre sur l’absorption laser résolue en temps et en espace à la surface de matériaux diélectriques irradiés (silice fondue et saphir). Des impulsions femtoseconde (30 − 450 fs) dans l’infrarouge sont utilisées pour étudier l’efficacité de couplage de l’énergie laser pour l’ablation de matériaux dans un régime d’intensité intermédiaire (1-100 TW/cm²) lors de deux expériences. Un schéma pompe-sonde détermine la dynamique du plasma électrontrou à l’échelle femtoseconde et une expérience de déplétion laser mesure l’énergie absorbée. Une étude morphologique du matériau est réalisée, évaluant les seuils d’endommagement et d’ablation ainsi que les morphologies d’ablation. Nous établissons ensuite un bilan d’énergie de l’absorption laser responsable de l’enlèvement de matière. Les densités d’énergie typiques atteintes sont évaluées expérimentalement et confrontées à une modélisation avec propagation. Un excès de dépôt d’énergie par rapport à l’énergie de liaison du matériau au repos est mis en évidence, suggérant qu’un important chauffage du gaz d’électrons libres a lieu. Nous réalisons enfin une interprétation des données avec un regard technologique. Des guides à la réalisation de microsystèmes en régime d’ablation laser femtoseconde sont proposés, et démontrent l’intérêt d’impulsions sous 100 fs pour un procédé photonique. / This thesis concerns femtosecond laser absorption in dielectrics in the context of micromachining processes of glass materials. Prospected applications of this technology are optical component micro-fabrication, smart glass manufacturing, or photovoltaic cell patterning. In this context, we focus on the characterization in time and space of the absorption mechanisms occurring at the surface of irradiated dielectric materials (fused silica and sapphire). Using near-IR ultrashort pulses (30 − 450 fs) laser energy coupling efficiency for material ablation is studied at mid-intensities (1-100 TW/cm²) through two experiments. A pump-probe scheme determines the electron-hole plasma dynamics at femtosecond timescale and a laser depletion experiment measures the material absorption. A morphological study of the samples is performed, evaluating the damage and ablation thresholds as well as ablation morphologies. We then establish an energy balance of laser absorption responsible of matter removal. Typical energy densities reached are estimated through experiments and confronted to a propagative model. It is shown that the amount of absorbed energy is far above the bonding energy of the material at rest, suggesting that the major part of the absorbed energy is spent to heat the free electron gas. Finally, we propose a technological analysis of the experimental data. The interest of sub-100 fs laser pulses for photonic processes is evidenced, however at the cost of additional complexity. It provides guidelines for efficient direct laser ablation, making the results relevant for femtosecond processes.
9

Contribution à la réalisation d'une micro-inductance planaire / Contribution to the realization of a planar micro-inductor

Allassem, Désiré 26 November 2010 (has links)
Les récents progrès dans les télécommunications exigent de nouveaux composants pouvant fonctionner à des fréquences de plus en plus élevées et l’électronique d’une manière générale exige des composants de très bonne qualité. L’objectif principal de ce travail est la conception, la réalisation et la caractérisation d’une micro-inductance intégrée utilisant les propriétés d’une couche relativement épaisse de matériau magnétique. Les structures bobinées étant difficilement intégrables, une structure planaire a été retenue. Deux types de dispositifs ont été réalisés : une structure composée d’une spirale sur une couche de matériau magnétique et une autre constituée d’une spirale prise en sandwich entre deux couches de matériau magnétique. Les études réalisées par simulation montrent de très bons résultats confirmés par les caractérisations. Plusieurs essais de caractérisation hautes fréquences (à l’aide d’un analyseur vectoriel) et basses fréquences (à l’aide d’un LCRmètre) ont été réalisés. Les résultats montrent un gain en termes de valeur d’inductance d’un facteur de deux sur la structure une couche et un gain d’un facteur proche de la perméabilité du matériau pour une structure double couche. Par ailleurs, une technique de caractérisation "courant fort" utilisant un té de polarisation et une technique de détermination de la perméabilité du matériau magnétique utilisant la combinaison des résultats de mesure et de simulation ont été développées. L’intégration des composants passifs comme l’inductance à couche magnétique relativement épaisse est possible grâce à l’utilisation des techniques de la microélectronique et de micro-usinage / Recent advances in telecommunications require new components that can operate at high frequencies and now, electronic requires high quality components. The main purpose of this work is the design, micro-fabrication and characterization of a micro-integrated inductor using properties of a relatively thick layer of magnetic material. As coiled structures are difficult to integrate a planar structure was chosen. Two kinds of devices have been made: a device consisting of one spiral on a layer of magnetic material and another consisting of one spiral sandwiched between two layers of magnetic material. The simulation studies show very good results confirmed by characterizations. Several high frequencies (using a vector analyzer) and low frequencies (using a LCRmeter) characterizations were made. Results show that the inductance value is multiplied by two in the case of a structure with one layer of magnetic material and by a factor close to the permeability of magnetic material in the case of a double layer structure. In addition, a high current characterization technique using a bias tee and a technique for determining the permeability of the magnetic material using a combination of measurement results and simulation have been implemented. The integration of passive components such as inductor with relatively thick magnetic layers is made possible by the use of microelectronic and micro-machining techniques
10

Micro-usinage de fibres optiques avec un laser CO₂

Pruneau Godmaire, Xavier 18 April 2018 (has links)
Le mandat initial de ce projet de maîtrise visait l'élaboration de procédures de microusinage de fibres optiques à l'aide d'un laser C0₂ puisé. L'efficacité d'usinage d'une fibre optique a d'abord été mise en évidence via l'étude théorique des phénomènes engendrés par l'absorption du rayonnement infrarouge. Suite à une caractérisation spatiale et temporelle du système laser, des méthodes sans contact de dégainage, de clivage et de polissage ont été mises sur pied en exploitant les propriétés uniques du rayonnement à 10,6/xm. Des fibres optiques de silice, de ZBLAN et de verre de chalcogénure ont toutes trois été soumises à ces procédures de micro-usinage. En définitive, l'étude de l'interaction entre un laser CO₂ et des réseaux de Bragg a permis de mettre en lumière quelques applications intéressantes.

Page generated in 0.0719 seconds