• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a microfluidic device for single cell transcriptome analysis / Développement d'un microsystème fluidique pour l'analyse du transcriptome des cellules isolées

Simon-Desbois, Linda 05 September 2013 (has links)
L’hétérogénéité cellulaire au sein d’une même population cellulaire a été observée chez des organismes procaryotes, chez des organismes plus complexes tels que les mammifères et chez les cellules cancéreuses. L’expression des gènes est un phénomène stochastique ou « bruité ». La connaissance, à l’échelle d’une cellule isolée, des variations stochastiques de l’expression génique, ses oscillations dans le temps et en fonction des fluctuations extérieures constitue un enjeu majeur. Elle permettrait de connaitre les mécanismes de croissance, de différenciation et de migration cellulaire et par voie de conséquence de développer de nouveaux outils thérapeutiques. Par ailleurs, les techniques actuelles d’analyses sur cellule unique nécessitent des protocoles longs et laborieux. Cependant, l’avènement des microcircuits dans les années 80, puis celle de la microfluidique dans les années qui ont suivi, ont ouvert les portes des analyses (chimiques, biologiques et biochimiques) à haut débit, sur de très petits volumes (pl à fl). Nous avons développé un microsystème fluidique, permettant la génération de micro gouttelettes ultrastables et facilement manipulables ; et ce, en utilisant les qualités de changement de phase de l’agarose. Par ailleurs, nous avons conçu un system innovant de génération de microgouttelettes le système « push-pull » qui permet de réduire les volumes morts. Le très petit volume des microgouttelettes font d’elles des microréacteurs dans lesquels nous avons pu encapsuler des suspensions d’ADN, puis des cellules isolées, réaliser des réactions biochimiques, et analyser leur transcriptome ; et améliorer encore l’efficacité et l’intérêt des microémulsions, une technique à très haut débit, et en plein essor.L’hétérogénéité cellulaire au sein d’une même population cellulaire a été observée chez des organismes procaryotes, chez des organismes plus complexes tels que les mammifères et chez les cellules cancéreuses. L’expression des gènes est un phénomène stochastique ou « bruité ». La connaissance, à l’échelle d’une cellule isolée, des variations stochastiques de l’expression génique, ses oscillations dans le temps et en fonction des fluctuations extérieures constitue un enjeu majeur. Elle permettrait de connaitre les mécanismes de croissance, de différenciation et de migration cellulaire et par voie de conséquence de développer de nouveaux outils thérapeutiques. Par ailleurs, les techniques actuelles d’analyses sur cellule unique nécessitent des protocoles longs et laborieux. Cependant, l’avènement des microcircuits dans les années 80, puis celle de la microfluidique dans les années qui ont suivi, ont ouvert les portes des analyses (chimiques, biologiques et biochimiques) à haut débit, sur de très petits volumes (pl à fl). Nous avons développé un microsystème fluidique, permettant la génération de micro gouttelettes ultrastables et facilement manipulables ; et ce, en utilisant les qualités de changement de phase de l’agarose. Par ailleurs, nous avons conçu un system innovant de génération de microgouttelettes le système « push-pull » qui permet de réduire les volumes morts. Le très petit volume des microgouttelettes font d’elles des microréacteurs dans lesquels nous avons pu encapsuler des suspensions d’ADN, puis des cellules isolées, réaliser des réactions biochimiques, et analyser leur transcriptome ; et améliorer encore l’efficacité et l’intérêt des microémulsions, une technique à très haut débit, et en plein essor. / In the post-genomic era, it is now critical to characterize living organisms at the singlecell level. CAGE (Cap Analysis of Gene Expression) is a technology developed by agroup of RIKEN instituteto get genome-wide profile of gene expression. It can beused for profiling of gene expression and identifying the TSS (transcription start site)to analyze promoters architecture. By using the CAGE technology, it could be foundthat different tissues and families of genes differentially use distinct types ofpromoters. Applying CAGE technology against single cells is an ideal way tounderstand life phenomenon based on genome and will have a major impact inbiology. To address this, a novel platform to manipulate single cell and analyze itsown transcriptome with higher precision and efficiency is required.This project aims to develop a microfluidic platform to realize the protocol of CAGEtechnology against single cells with higher-throughput and sensitivity overconventional microtube-based way. For this, we encapsulated single cells inmicrodroplets, lysed them, and performed RT reaction in order to sequence andanalyze their transcriptome.
2

Microfluidique diphasique accordable / Tunable diphasic microfluidic

Tarchichi, Nathalie 18 April 2013 (has links)
Depuis ces dernières années, il y a eu augmentation de l’effort pour le développement des systèmes microfluidiques dédiésà la dispersion d’une phase fluide dans une autre phase fluide immiscible. Les gouttelettes ou les bulles résultantes ont de nombreuses applications dans des diverses domaines (photonique, chimique, biologique...). Pour la plupart de ces applications, il est primordial de contrôler la taille et la forme de ces gouttelettes/bulles, paramètres qui influencent directement le comportement ou la réponse du système. Notre but consiste ainsi à générer des gouttelettes de taille unique (mono-dispersées) et contrôlable pour produire des structures accordables. Nous analysons aussi leurs mécanismes de formation et étudions les paramètres qui influent sur leur taille et leur forme. Dans le présent travail, la génération de gouttelettes est réalisée en utilisant une intersection entre deux microcanaux (jonction en T) où leur taille est directement liée à la géométrie. Dans cette configuration, il existe trois régimes connus de génération de gouttelettes qui sont les régimes de dripping, squeezing et jetting. Nous nous sommes particulièrement intéressés à l’étude du régime dripping car il assure la génération de gouttelettes ayant une taille plus petite que celle obtenue avec les autres régimes. Les expériences et les études théoriques ont montré que le diamètre des gouttelettes diminue quand la largeur des canaux diminue, quand la vitesse de la phase continue augmente et quand la vitesse de la phase dispersée diminue. De plus, nous avons pu mettre en évidence un nouveau régime de génération de gouttelettes pour lequel les gouttelettes générées ont un diamètre constant, indépendamment des vitesses des phases continue et dispersée, et qui ne dépend que de la géométrie des canaux. Nous avons appelé ce nouveau régime le régime “balloon”. Nous avons enfin montré l’intérêt de l’accordabilité des systèmes microfluidiques en optique et en acoustique. Ainsi, nous avons montré que la période du réseau de diffraction optique est facilement modifiable en contrôlant les paramètres de génération de bulles. De même, nous avons pu voir que la réponse acoustique est liée `a la résonance des bulles dans le milieu liquide. Cette réponse est une fonction du diamètre des bulles générées. Enfin, nous proposons l’utilisation du système microfluidique en électronique pour produire des capacités variables, ouvrant la voie à des nouvelles fonctionnalités pour la microfluidique diphasique. / Since the past few years, there has been an increasing effort in developing microfluidic devices for dispersing one fluid phase in another immiscible fluid phase. Micro fluidic bubbles or droplets have many applications in different fields such as photonics, chemistry, biology... For most of these applications, it is important to control the size and the shape of these droplets or bubbles, since they directly influence the response of the system. Our goal is to generate mono disperse and controllable droplets to produce tunable structures. We also analyze their formation mechanisms and study the parameters that affect their size and their shape. In the present work, we use T-junction geometry to generate droplets of uniform size. In this configuration, there are three known regimes of droplet generation: dripping, squeezing and jetting regimes. We are particularly interested in the study of the dripping regime since it ensures the generation of droplets of smaller size compared to the other regimes. The experimental and the theoretical studies have shown that the droplets diameter decreases when the channels width decreases, when the continuous phase velocity increases and when the dispersed phase velocity decreases. In addition, we have shown evidence of a new regime of droplet generation in which the droplet diameter is constant, independent of the continuous and dispersed phases velocities and only related to the geometry of the T-junction channels. We named this new regime the balloon regime. We finally demonstrated the usefulness of the tunability of microfluidic systems in optics and acoustics. Actually, we show that the diffraction grating period can be easily changed by controlling the parameters of bubble generation. We show also that the acoustic response is related to the bubbles resonance in the liquid medium. This response is a function of the bubbles diameter. Finally, we propose the use of the microfluidic system in electronics, for realizing varying capacitors, where the diphasic microfluidic opens the way to new functionalities
3

Microfluidique diphasique accordable

Tarchichi, Nathalie 18 April 2013 (has links) (PDF)
Depuis ces dernières années, il y a eu augmentation de l'effort pour le développement des systèmes microfluidiques dédiésà la dispersion d'une phase fluide dans une autre phase fluide immiscible. Les gouttelettes ou les bulles résultantes ont de nombreuses applications dans des diverses domaines (photonique, chimique, biologique...). Pour la plupart de ces applications, il est primordial de contrôler la taille et la forme de ces gouttelettes/bulles, paramètres qui influencent directement le comportement ou la réponse du système. Notre but consiste ainsi à générer des gouttelettes de taille unique (mono-dispersées) et contrôlable pour produire des structures accordables. Nous analysons aussi leurs mécanismes de formation et étudions les paramètres qui influent sur leur taille et leur forme. Dans le présent travail, la génération de gouttelettes est réalisée en utilisant une intersection entre deux microcanaux (jonction en T) où leur taille est directement liée à la géométrie. Dans cette configuration, il existe trois régimes connus de génération de gouttelettes qui sont les régimes de dripping, squeezing et jetting. Nous nous sommes particulièrement intéressés à l'étude du régime dripping car il assure la génération de gouttelettes ayant une taille plus petite que celle obtenue avec les autres régimes. Les expériences et les études théoriques ont montré que le diamètre des gouttelettes diminue quand la largeur des canaux diminue, quand la vitesse de la phase continue augmente et quand la vitesse de la phase dispersée diminue. De plus, nous avons pu mettre en évidence un nouveau régime de génération de gouttelettes pour lequel les gouttelettes générées ont un diamètre constant, indépendamment des vitesses des phases continue et dispersée, et qui ne dépend que de la géométrie des canaux. Nous avons appelé ce nouveau régime le régime "balloon". Nous avons enfin montré l'intérêt de l'accordabilité des systèmes microfluidiques en optique et en acoustique. Ainsi, nous avons montré que la période du réseau de diffraction optique est facilement modifiable en contrôlant les paramètres de génération de bulles. De même, nous avons pu voir que la réponse acoustique est liée 'a la résonance des bulles dans le milieu liquide. Cette réponse est une fonction du diamètre des bulles générées. Enfin, nous proposons l'utilisation du système microfluidique en électronique pour produire des capacités variables, ouvrant la voie à des nouvelles fonctionnalités pour la microfluidique diphasique.

Page generated in 0.0577 seconds