• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification de lois de comportement de tôles en faibles épaisseurs par développement et utilisation du procédé de microformage incrémental / Idefntification of behavior laws of thin sheet metals by developing and using micro-incremental forming process

Ben Hmida, Ramzi 18 December 2014 (has links)
La miniaturisation des composants est aujourd’hui un challenge mondial. La fabrication de ces composants est rendue difficile par un certain nombre de phénomènes liés aux effets d’échelle. Il est ainsi nécessaire de répondre à ces contraintes de réduction d’échelle en termes de conception, de réalisation et de fonctionnement de ces systèmes. Cette étude aborde la problématique de la miniaturisation des procédés et plus particulièrement du procédé de micro-formage incrémental « mono-point » (micro-SPIF) à travers des études expérimentales et numériques. Le micro-formage incrémental de tôles est présenté comme une approche intéres sante de fabrication de structures minces. La géométrie désirée est assurée par la trajectoire d’un outil imposant une déformation locale sur la tôle serrée en son contour. Dans un premier temps, une approcheexpérimentale consistant à analyser le comportement mécanique des éprouvettes en alliage de cuivre avec différentes tailles de grains par des essais de traction a été proposée. L’interaction entre la géométrie et la microstructure est évaluée à l’aide du ratio de l'épaisseur par la taille moyenne de grains Φ=t/d. Un pilote de formage incrémental « mono-point » instrumenté a été également développé. Une campagne d'essais expérimentaux de micro-SPIF a été ainsi réalisée sur des flans par différentes tailles de grains afin d'étudier les effets de la microstructure sur la géométrie, l’état de surface, la distribution des épaisseurs et sur l’évolution des efforts. Dans un second temps, un modèle paramétrique de type éléments finis simulant le micro-SPIF a été développé en langage MATLAB®. Le code de calculs LS-DYNA® a été utilisé pour simuler le procédé en adaptant une loi de comportement élastoplastique. Ensuite, les résultats obtenus en termes de géométrie,d’évolution de l’épaisseur et d’efforts de formage sont confrontés aux relevés expérimentaux afin de valider la procédure numérique. Dans un troisième temps, une loi élastoplastique endommageable décrivant les principaux phénomènes physiques intervenant durant le formage des métaux en grandes déformations a été présentée. Une procédure d'identification de cette loi basée sur une analyse inverse de l’effort au cours du procédé de micro-SPIF a été proposée et des tests de validation du modèle ont été discutés. Enfin, une analyse de l'identifiabilité locale basée sur un indice de multicolinéarité des fonctions de sensibilité est effectuée pour valider la procédure d’identification paramétrique et quantifier l’intérêt du procédé pour la caractérisation quantitative des tôlesminces en très grandes déformations / The miniaturization of components is now a world challenge. The manufacture of these componentsis difficult because of several phenomena related to the so-called size effect. It is thus necessary to fulfill theserequirements of scaling down in terms of design, implementation and operations. This study deals with theproblems of miniaturization processes, especially the “micro-Single Point" Incremental Forming process (micro-SPIF) through experimental and numerical studies. Micro-single point incremental forming process is presentedas an interesting approach for thin structures manufacturing. The desired geometry is provided by the tool pathrequiring a local deformation in a sheet clamped along its contour. Firstly, an experimental approach consistingin analyzing the mechanical behaviour of copper alloy specimens with various grain sizes by tensile tests hasbeen proposed. The interaction between the geometry and the microstructure is evaluated using the ratio of thethickness by the average grain size Φ=t/d. An instrumented micro-SPIF device was also developed. A set ofsingle point incremental sheet forming experimental tests were conducted on blanks with several grain sizesusing two forming strategies in order to study the effect of microstructure on the geometry, the surface topology,the thickness distribution and the forming forces evolutions. Secondly, a finite element parametric model capableof simulating the micro-SPIF process was developed in MATLAB® language. The commercial LS-DYNA® codewas used to simulate this process using an elastic-plastic constitutive law. Then, the results obtained in terms ofgeometry, thickness evolution and forming forces are compared with the experimental results in order to validatethe numerical procedure. Thirdly, an elastic-plastic damage model describing the main physical phenomenainvolved during metal forming by large deformation was presented. An identification procedure of thisbehaviour law based on the inverse analysis of the axial forming force during micro-SPIF process was proposedand several validation tests of the model were discussed. Finally, local identifiability analysis based on an indexof multicollinearity of the sensitivity functions was performed in order to validate the parameters identificationprocedure and quantify the advantage of the process for quantitative mechanical behaviour characterization ofthin metal sheets at large strains

Page generated in 0.092 seconds