• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 17
  • 14
  • 10
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 217
  • 217
  • 65
  • 40
  • 40
  • 33
  • 33
  • 23
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Investigating the Influence of Phosphorus Availability on Belowground Processes in Forested Ecosystems

Dorkoski, Ryan 08 July 2016 (has links)
No description available.
42

Microbial Communities in Septic Tank Anaerobic Digesters and Their Interactions with Digester Design and Chemical Environment

Naphtali, James January 2020 (has links)
Anaerobic digester design and operation influences the biomass degradation efficiency performed by complex and diverse microbial communities. Optimum anaerobic digester design and operational parameters in residential on-site wastewater treatment sites (OWTS) establishes physiochemical environments suitable for the growth and stability of the microbial communities responsible for organic waste degradation. A comparative study of the microbial communities and their functional profiles between different OWTS designs and operational parameters have not been done despite their functional importance in residential organic waste removal. Using whole-metagenome shotgun sequencing, microbial community compositions and functions were compared between two digester designs: conventional box septic tanks and septic tanks equipped with a novel closed-conduit tube called the InnerTubeTM. Wastewater was sampled along the length of each digester to explore the microbial community stratification during the anaerobic digestion treatment process. Additionally, the effect of effluent, aerobic recirculating-lines on the digester microbiome was also explored. Physiochemical characteristics in the form of oxygen demand, nitrogen and solids content was used as endpoints and correlated with microbial community and functional gene abundances to explore the microbes driving anaerobic digestion. Conventional digesters were characterized by syntrophic proprionate-oxidizing microbes and acetoclastic methanogens, while InnerTube™ digesters were characterized by syntrophic sulfate-reducing microbes and hydrogenotrophic methanogens. Recirculating digesters were enriched with denitrifying microbial consortia in syntrophy with hydrogenotrophic methanogens. Microbial communities were organized according to hydrolytic, acidogenic, acetogenic, and methanogenic groups along the digester treatment process. Insight into the core microbiome of OWTS can inform bioaugmentation and digester design and operation optimization strategies to improve the treatment of decentralized residential sewage sources. / Thesis / Master of Science (MSc) / Anaerobic digesters are used throughout North America to treat residential sewage. Despite their prevalence, the composition and function of the microbial communities driving sewage degradation in residential digesters has not been studied. We used DNA sequencing to compare the microbial communities and functional genes in different anaerobic digester designs across Southern Ontario. Our findings suggest there are successive microbial groups along the length of septic tanks and that different septic tank designs harbor characteristic sulfidogenic and methanogenic microbes. Characterization of these microbes could inform septic tank bioaugmentation, design and operational optimization strategies to improve sewage treatment performance.
43

Proteomic and genomic characterization of the influence of copper on Legionella pneumophila and the drinking water microbiome

Mena Aguilar, Didier Philippe 12 April 2022 (has links)
Legionella pneumophila is a pathogen that can proliferate in premise (i.e., building) plumbing and, when aerosolized during water use, infect the lungs of exposed individuals and cause a deadly form of pneumonia known as Legionnaires' disease. Given that it is one of the primary sources of tap-water associated disease throughout much of the world, this organism has been the subject of intense research, ranging from aiming to understand key aspects of its physiology that allow it to proliferate in premise plumbing, to the specific virulence factors that make it so infectious to humans. The work presented here starts with a comprehensive review of published studies related to the L. pneumophila proteome, i.e., the set of expressed proteins associated with a given strain under a given set of environmental conditions, showing how the field has progressed in parallel to improvements in mass spectrometry technologies and how proteomics can be used as a tool to understand this unique and important organism. Copper is a natural antimicrobial that can be present in drinking water due to passive release from copper pipes or intentionally dosed (e.g., copper-silver ionization systems) for microbial control. However, some L. pneumophila strains have recently been found to exhibit copper resistance, an adaptive process that is not fully understood at the physiological level. Chapter Two describes the copper survivability of three outbreak-associated strains of L. pneumophila and examines the copper-induced proteome of QC1, a strain found to display high resistance to copper. Pairwise comparisons of the proteomes of copper-resistant and copper sensitive strains indicated that L. pneumophila QC1 adapts to copper exposure via the induction of redox and metal homeostasis proteins, while concomitantly inducing motility and pathogenesis related proteins, suggestive that copper induces a search for a host protozoan strain for protection. In 2014 and 2015, Flint, Michigan experienced the largest per capita community-wide Legionnaires' Disease outbreak in US history. The outbreak was associated with a change in the source of the municipal drinking water supply from Detroit water, which was sourced from the Great Lakes and subject to appropriate corrosion control, to the Flint River, which was not appropriately controlled for corrosivity. The underlying drivers of this outbreak have been debated and include: elevated iron in the water serving as a nutrient for L. pneumophila, diminished chlorine in the water due to reactions with iron, reduced copper in the water due to shifts in pH influencing release from copper pipes, and shifts in potentially key components of the microbial community. In Chapter Three of this dissertation, we employ controlled microcosm studies to establish a fundamental understanding of interactive effects of pipe material and water of varying iron bioavailability (ferric chloride, ferrous chloride and ferric pyrophosphate) on the microbial community and its relationship with L. pneumophila numbers. The combination of copper pipes and Flint River water decreased the diversity of the microbial community to a larger degree than copper pipes with Detroit water, implying greater copper bioavailability in the former condition. Several Order were found to be significantly associated with high or low numbers of culturable L. pneumophila recovered from the microcosms. Most notably, the Order Pseudomonadales was significantly associated to the reactors with low culturable L. pneumophila. This order contains Pseudomonas species known to inhibit the growth of L. pneumophila. The findings reported in this dissertation can be used to develop more informed management practices for drinking water systems to reduce the risk of Legionnaires' Disease outbreaks associated with premise plumbing. Specifically, 1) copper might be inducing a more pathogenic form of copper resistant L. pneumophila, 2) the use of corrosive control in municipal water systems goes beyond the influence on lead and copper pipes, but also on the microbial community, which in part influences L. pneumophila, and 3) there are organisms, such as Pseudomonadales species, associated with environments with low culturable L. pneumophila which might be introduced to the drinking water systems as probiotics. / Doctor of Philosophy / Legionella pneumophila is a microbe found in drinking water plumbing systems. This organism causes Legionnaires' Disease, a severe form of pneumonia that particularly affects immunocompromised individuals. Due to its health and economic impact, there are worldwide efforts to understand the biology of this organism, from the conditions that allows it to grow in the drinking water plumbing, to the specific components that allows it to infect humans. In this dissertation, we first review the published studies related to the L. pneumophila proteome, a powerful tool used to functionally describe biological organisms. This first chapter showed how proteomics can be used to understand this unique and important organism. In the next chapter we studied how copper metals may influence the proteome of L. pneumophila. Copper pipes have been extensively used to control the growth of microorganisms in drinking water systems, however some studies have reported that copper may promote the growth of L. pneumophila. In this chapter, we showed that a copper resistant strain of L. pneumophila adapts to copper exposure by inducing motility and pathogenesis related proteins, suggesting that it might be more infectious. In the last chapter of this dissertation, we investigated the combined effect of pipe material and water chemistry, on the microbial community and its relationship with L. pneumophila. The combination of copper pipes and a more corrosive water decreased the diversity to a larger degree, in comparison to the other evaluated conditions. Several organisms were also identified to be significantly associated with the high or low culturable L. pneumophila. This is of particular interest because they might be used as potential probiotics to control the growth of L. pneumophila. The findings reported in this dissertation can help to better understand the significance of water chemistry and pipe material, particularly copper pipes, for the purpose of reducing risk of Legionnaires' Disease outbreaks associated with drinking water systems.
44

Microbial Communities of Spinach at Various Stages of Plant Growth From Seed to Maturity

Carder, Phyllis 26 July 2010 (has links)
Little is known about how the leaf bacterial community is affected by the seed microbiota at different stages of plant development. The bacterial populations of spinach seed and leaves after germination were compared using DGGE, to assess bacterial community richness, and real-time PCR to compare the abundance of select phyla (total bacteria, <i>Actinobacteria, Bacteroidetes, Firmicutes, α-Proteobacteria and β- Proteobacteria</i>). To determine the effect of environment, the plants were grown in the field and growth chambers. Vertical transmission of bacterial community members was evident; the developmental stage of the plant affected the richness and abundance of select bacterial phyla. The bacterial richness of plants grown in the two environments was not affected. However, overall numbers of bacteria increased in field grown samples in comparison to those produced in growth chambers during development. A statistically significant interaction was seen between growth stage and environment with each of the selected phyla. Populations on cotyledons were smaller than mature leaves, but were not significantly different than the 3-4 leaf stage plants. The culturable populations of bacteria on seeds (~5 log CFU/g) were significantly smaller than determined using real time PCR (~7 log copies). Of these bacteria cultured from spinach seeds, isolates belonging to the genera <i>Pantoea</i> were found to inhibit growth of <i>E. coli</i> O157:H7 <i>in vitro</i>. This study highlights the importance of vertical transmission on the bacterial community of plants and suggests the importance of developing strategies to influence these communities on seed to control human and plant pathogens on the leaf surface. / Master of Science in Life Sciences / Master of Science
45

Microbial Community Structure by Fatty Acid Analysis during Polycyclic Aromatic Hydrocarbon Degradation in River Sediment Augmented with <i>Pleurotus ostreatus</i>

Sajja, Sarala Kumari 30 May 2008 (has links)
No description available.
46

Microbial community properties and mechanisms of assembly in managed ecosystems

Liu, Zishu 26 July 2019 (has links)
Microorganisms are ubiquitously distributed on the earth and drive the fundamental element cycling in the biosphere. Their metabolic activities serve human societies in countless areas such as biotechnological engineering, food engineering, energy production, waste disposal et cetera. For human beings, and also for animals, microorganisms are imperative for health especially as colonizers of the gut system. Microbial resource management, especially when complex communities are exploited in biotechnology is a key challenge. Therefore, communities are more and more in the focus of basic research in microbiology complementary to pure cultivation technologies. Owing to their complexity, microbial communities are almost exclusively studied on the basis of bulk parameters and empirical expert knowledge. Bulk parameters are representative for an entire community performance but do not allow a segregated analysis of subpopulations or subcommunities, let alone individuals and their disparate functions within a community. This thesis aims to resolve microbial community properties and mechanisms of assembly in managed ecosystems on the individual level (i.e. single cell). For this the flow cytometric toolbox was employed and further expanded, which phenotypically classifies microbial individuals into sub-communities according to their physiological similarities. Workflows for the fast analysis and evaluation of dynamics in community structure, assembly and interaction were developed. Stability properties of communities, i.e. resistance, resilience, displacement speed and elasticity, can now quantitatively be determined based on cytometric data. For resilience behavior an on-line tool was developed. In addition, the relative proportions of neutral and deterministic forces that structure a microbial community can now be unraveled. As consequence, microbial flow cytometry has been proven to be a powerful tool for analysing complex microbial communities, and will allow huge improvements in understanding and control of microbial communities in managed and natural ecosystems.:Contents Summary ............................................................................................................. I Zusammenfassung ........................................................................................... IV 1 Introduction ..................................................................................................... 1 1.1 Microbial community and ecology ........................................................... 1 1.1.1 What is a microbial community? ...................................................... 1 1.1.2 Flow cytometry as a tool to study microbial communities ................ 2 1.2 Community structure and diversity ........................................................ 10 1.2.1 Community structure...................................................................... 10 1.2.2 Diversity metrics ............................................................................ 10 1.2.3 Evaluating structure and diversity with flow cytometry ................... 12 1.3 Community assembly and dynamics ..................................................... 13 1.3.1 Basic assembly processes ............................................................ 13 1.3.2 Evaluating assembly processes with flow cytometry ..................... 16 1.4 Community interactions ......................................................................... 18 1.4.1 Abiotic interactions of microbes and their surroundings................. 18 1.4.2 Biotic interactions of microbial partners ......................................... 18 1.4.3 Evaluating interactions with flow cytometry ................................... 20 1.5 Community functions ............................................................................. 22 1.5.1 Omics approaches to study functions in microbial communities .... 22 1.5.2 Evaluating functions with flow cytometry ....................................... 23 1.6 Aims of this study .................................................................................. 25 2 Publications .................................................................................................. 27 2.1 Overview of publications ....................................................................... 27 2.2 Published articles .................................................................................. 28 2.2.1 Publication 1 .................................................................................. 29 2.2.2 Publication 2 .................................................................................. 42 2.2.3 Publication 3 (under review) .......................................................... 60 3 Discussion .................................................................................................... 81 3.1 The importance of perceiving ecological situations ............................... 81 3.2 Stability properties of a microbial community ........................................ 84 3.3 Assembly processes in insular environments ....................................... 87 3.3.1 Niche differentiation under balanced cultivation conditions ........... 88 3.3.2 Neutral assembly under balanced cultivation conditions ............... 89 3.3.3 From intermediate disturbance to a non‐equilibrium system ......... 90 3.4 On-line analysis of reactor data ............................................................ 93 3.5 Conclusion and outlook ......................................................................... 95 4 References ................................................................................................... 97 5 Acknowledgement ...................................................................................... 105 6 Appendix .................................................................................................... 106 6.1 Declaration of independent work ......................................................... 106 6.2 Author contributions of published articles............................................ 107 6.3 Curriculum vitae .................................................................................. 111 6.4 List of Publications and conference contributions ............................... 112 6.5 Supplementary materials .................................................................... 113 6.5.1 Supplementary material for publication 1 .................................... 113 6.5.2 Supplementary material for publication 2 .................................... 140 6.5.3 Supplementary material for publication 3 .................................... 174
47

Change in the Structure of Soil Microbial Communities in Response to Waste Amendments

Buckley, Elan January 2020 (has links)
Soil microbial communities are affected extensively by addition of amendments to their environment. Of particular concern is the addition of poultry litter, which contains a substantial C, energy, and nutrient supply, but also antibiotic resistance genes (ARG), antimicrobials, and a multitude of microbial species. This project seeks to primarily assess if there is a change in bacterial community structure in response to poultry litter amendments to pasture land across geographically independent land across northern Georgia. It may be that changes in the relative abundance of bacterial communities also result in alteration in ARGs, and the community resistance to antibiotics (“resistome”) which in turn increases the potential threat of antibiotic resistance genes. While another part of this study will determine changes in integrons and specific ARGs, this project will focus on changes in bacterial communities and the potential functional changes in the community, which in turn have consequences for ARG levels and its horizontal transfer to various members of the soil community. Addition of waste from livestock is a historical method for increasing nutrients needed in the soil for the cultivation of crops, and in turn causes pronounced shifts in soil microbial communities due to the addition of large amounts of carbon, nutrients, foreign microbes, and other material. This study is unique because it utilizes a novel and relatively large landscape-scale to determine if there are discernable and repeatable patterns of bacterial community structure change in response to amendment regardless of exact soil type or source of chicken litter amendment. In the future, these data can also provide insight into the changes in the relative abundance antibiotic related genes associated with community change. / M.S. / Soil is complicated, both in terms of its physical makeup and the organisms that live inside of it. Predicting changes in soil based on the addition of foreign material such as chemicals or biological waste is not an easy process, and whether or not it is even possible to reliably predict those changes is a matter of some dispute. This study is designed to illustrate that such changes can in fact be reliably and consistently predicted even with regard to the addition of complicated materials to the soil. In this study, specifically, the material in question is chicken litter. A mix of the bedding and waste produced by chickens, litter is commonly handled by composting and is added to soil in farms as a fertilizer rich in organic matter. It is possible to point at specific elements of the soil such as the chemistry and bacteria and see how it is changed with the addition of chicken litter, which allows us to determine the nature and extent of the change that chicken litter has on soil. This study is conducted on a larger scale than similar experiments conducted in the past, making it apparent that these relationships exist on a repeated basis. It is the object of this study to pave the way and make it easier for scientists in the future to determine these relationships in other unique contexts.
48

Effects Of Turning Frequency, Pile Size And Season On Physical, Chemical And Biological Properties During Composting Of Dairy Manure/Sawdust (Dm+S)

Tirado, Sandra M. 10 September 2008 (has links)
No description available.
49

Investigation of the microbial diversity and functionality of soil in fragmented South African grasslands along an urbanization gradient / Jacobus Petrus Jansen van Rensburg

Van Rensburg, Jacobus Petrus Jansen January 2010 (has links)
The diversity of microorganisms and the influence of their enzymatic activities in soil are critical to the maintenance of good soil health. Changes in these parameters may be the earliest predictors of soil quality changes, potentially indicating anthropogenic influences. The goal of this study was to investigate the soil microbial diversity and function of grasslands along an urbanization gradient. Soil samples were collected in the Potchefstroom municipal area, South Africa, at specific sites. Sampling sites were described as urban, suburban and rural - according to the V-I-S (Vegetation-Impervious surface-Soil) model of Ridd (1995). Soil samples were collected over a warmer, wet season (May) and a colder, dry season (August) over two years (2007 and 2008). Collected soil samples were characterised using certain physical and chemical parameters. Plant species composition and abundance were determined at each site, along with basic site data (soil compaction, percentage ground cover, percentage bare ground, percentage organic material present). The Shannon-Weaver diversity index was used to calculate biodiversity values for all the investigated sites regarding collected plant species composition. The microbial component of the soil was quantified and characterized using culture-dependent and culture-independent techniques. Culture-dependent techniques included the investigation of the aerobic heterotrophic bacteria and fungi. Organisms were plated out on different media, and the bacterial component was broadly grouped using morphology. Dominant organisms were identified by sequencing of PCR amplified 16S ribosomal DNA fragments. Shannon-Weaver index for bacterial diversity was determined for each of the sites. Denaturing gradient gel electrophoresis (DGGE) profiling of selected bacterial communities were also conducted. Microbial community function was determined using enzyme assays of five major groups of enzymes, namely (i) dehydrogenase; (ii) β-glucosidase; (iii) acid phosphatase, (iv) alkaline phosphatase and (v) urease. Plant species results were then brought into context with microbiological diversity and functionality results using multivariate statistics. Physical and chemical parameters of the collected soil samples revealed patterns present along the urbanization gradient. The pH values were mostly higher in the sub-urban and urban sites than in the rural sites. Electrical conductivity values were generally highest in the sub-urban sites. Plant species composition revealed trends along the urbanization gradient. Ordinations clearly grouped the plant species into rural, sub-urban and urban groups regarding plant species composition. Rural sites had the highest number of plant species. Shannon-Weaver values regarding the plant diversity supported the plant species composition data indicating higher plant diversity in the rural areas, followed by the sub-urban and the urban areas. Plant structural data indicated that forbs were most numerous in the rural sites, and less so in the urban sites. Higher average aerobic heterotrophic bacterial levels were present in the urban soil samples. The bacterial levels were lower in the sub-urban and rural soil samples. Subsequent identification of the dominant bacteria in the soil samples revealed organisms of the genus Bacillus dominated the aerobic heterotrophic bacterial communities in the soil samples. Bacillus species dominated the soil samples along the urbanization gradient. Shannon-Weaver indices based on culture-dependent methods indicated that urban sites had the highest biodiversity. These results could have been exaggerated, because of an overestimation of the number of bacterial morphotypes present in samples. Fungal levels were higher in the soil from samples collected at the rural samples sites. The culture-independent method (DGGE) was not optimized and inconclusive results were obtained. Enzyme assays revealed that potential dehydrogenase, β-glucosidase and urease activity followed a trend along the urbanization gradient, with urban samples registering the highest values and rural sites the lowest. Enzymes involved in carbohydrate catabolism (β-glucosidase and dehydrogenase) registered significantly higher potential activity in urban sites than the sub-urban and rural sites. The results could indicate that urban sites have the potential to lose carbon at higher rates than the rural sites. This aspect may need further investigation. Higher potential urease activity could indicate higher N-cycling in the urban soil environment. Ordination results for soil-, plant- and microbial diversity as well as microbial functionality indicated certain trends along the urbanization gradient. Plant species composition and structure data indicated that urbanization has a definite effect on the plant communities in the urban ecosystem. Results regarding aerobic heterotrophic bacteria populations and potential enzyme activity of the dehydrogenase, β-glucosidase (both active in the carbon cycle) and urease (active in the nitrogen cycle) illustrated clear trends along the urbanization gradient. In conclusion, results indicated that urbanization has an effect on plant species composition, and the population and function of aerobic heterotrophic bacteria and the fungal population. Furthermore, this study demonstrated the potential of using microbial diversity and activity as tools to investigate carbon utilization and storage along an urban-rural gradient. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2011
50

The effect of fumigants on earthworms (Eisenia andrei) and soil microbial communities / Tanya Christina Fouché

Fouché, Tanya Christina January 2015 (has links)
Biofumigation is an important crop protection practice that uses a plant’s natural defence mechanisms to control agricultural crop pathogens and diseases. Glucosinolates are volatile compounds found in most Brassica species and when hydrolysed, it forms a range of natural toxins including isothiocyanates that act as biofumigants. Research suggests that biofumigation is a good alternative to chemical fumigants as it is effective in controlling plant pests but with lower health and environmental risks. Several studies have confirmed the effectiveness of the breakdown products, especially isothiocyanates, as fungicidal, bactericidal and nematicidal products against a series of plant pests. However, very little information is available on the effects of glucosinolates and its breakdown products on non-target and beneficial soil organisms. Negative effects on beneficial soil organisms can have serious negative impacts on soil quality especially when essential ecosystem functions such as nutrient cycling and soil bioturbation are affected. Three biofumigants, broccoli, mustard and oilseed radish, and two chemical fumigants, metham sodium and cadusafos, were investigated for possible effects on non-target and essential soil organisms such as earthworms and the soil microbial community. Sublethal endpoints, including growth and reproductive success of the earthworms, were monitored. The genotoxicity of the biologically active compounds found in the fumigants, towards earthworms, was evaluated by means of the comet assay. The DNA damage was quantified by tail intensity parameters. Furthermore, the changes in the soil microbial community function and structure were evaluated by means of community level physiological profiling (CLPP) and phospholipid fatty acid (PLFA) analyses respectively. All exposures were done in artificial soil prepared according to the OECD standard guidelines. In the biofumigant treated soils, results varied and different effects were observed on the non-target soil organisms. Broccoli reduced cocoon production and the number of hatchlings while mustard induced more DNA strand breaks in earthworm cells compared to the control. All the biofumigants stimulated microbial growth but broccoli and oilseed radish changed the microbial functional diversity. Mustard had no lasting effect on the functional diversity but altered the microbial community structure. The chemical fumigants had a marked negative impact on the survival, growth, reproduction and the genotoxicity of the earthworms with metham sodium causing greater harm than cadusafos. The effects on the microbial community varied. Both chemicals had an inhibitory effect on the microbial growth in terms of the viable biomass determined by PLFA and the average well colour development in the Biolog™ Ecoplates. No lasting effects were observed in the community structure. Overall, cadusafos had a more pronounced effect on the microbial community functional diversity than metham sodium. Results indicated that each bioindicator species illustrates effects at their own level of organisation / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0573 seconds