• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 3
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery and Characterization of Microbial Esterases for Fiber Modification

Wang, Lijun 03 January 2011 (has links)
Carboxyl esterases, particularly arylesterases, were predicted from 16 microbial genomes, and then expressed in E. coli. Of the more than 175 cloned genes, 86 were expressed in soluble form. These were screened for activity using a range of both commercial and natural substrates. Forty-eight proteins were active on pNP-acetate at pH 8 whereas 38 proteins did not exhibit any activity towards any substrates. Among the 48 active proteins, 20 proteins showed arylesterase activity. To date, 8 bacterial esterases and 2 archaeal arylesterases were characterized in terms of pH stability and optima, thermal inactivation, solvent stability, and kinetics. To our knowledge there is only one other published report of arylesterases from archaea. The synthetic capability of arylesterases can transform phenolic acids to value-added chemicals. Accordingly, this project provides an arsenal of industrially significant activities that can extend the antioxidant properties of lignin-derived molecules in a broader range of renewable products.
2

Discovery and Characterization of Microbial Esterases for Fiber Modification

Wang, Lijun 03 January 2011 (has links)
Carboxyl esterases, particularly arylesterases, were predicted from 16 microbial genomes, and then expressed in E. coli. Of the more than 175 cloned genes, 86 were expressed in soluble form. These were screened for activity using a range of both commercial and natural substrates. Forty-eight proteins were active on pNP-acetate at pH 8 whereas 38 proteins did not exhibit any activity towards any substrates. Among the 48 active proteins, 20 proteins showed arylesterase activity. To date, 8 bacterial esterases and 2 archaeal arylesterases were characterized in terms of pH stability and optima, thermal inactivation, solvent stability, and kinetics. To our knowledge there is only one other published report of arylesterases from archaea. The synthetic capability of arylesterases can transform phenolic acids to value-added chemicals. Accordingly, this project provides an arsenal of industrially significant activities that can extend the antioxidant properties of lignin-derived molecules in a broader range of renewable products.
3

Investigation of the microbial diversity and functionality of soil in fragmented South African grasslands along an urbanization gradient / Jacobus Petrus Jansen van Rensburg

Van Rensburg, Jacobus Petrus Jansen January 2010 (has links)
The diversity of microorganisms and the influence of their enzymatic activities in soil are critical to the maintenance of good soil health. Changes in these parameters may be the earliest predictors of soil quality changes, potentially indicating anthropogenic influences. The goal of this study was to investigate the soil microbial diversity and function of grasslands along an urbanization gradient. Soil samples were collected in the Potchefstroom municipal area, South Africa, at specific sites. Sampling sites were described as urban, suburban and rural - according to the V-I-S (Vegetation-Impervious surface-Soil) model of Ridd (1995). Soil samples were collected over a warmer, wet season (May) and a colder, dry season (August) over two years (2007 and 2008). Collected soil samples were characterised using certain physical and chemical parameters. Plant species composition and abundance were determined at each site, along with basic site data (soil compaction, percentage ground cover, percentage bare ground, percentage organic material present). The Shannon-Weaver diversity index was used to calculate biodiversity values for all the investigated sites regarding collected plant species composition. The microbial component of the soil was quantified and characterized using culture-dependent and culture-independent techniques. Culture-dependent techniques included the investigation of the aerobic heterotrophic bacteria and fungi. Organisms were plated out on different media, and the bacterial component was broadly grouped using morphology. Dominant organisms were identified by sequencing of PCR amplified 16S ribosomal DNA fragments. Shannon-Weaver index for bacterial diversity was determined for each of the sites. Denaturing gradient gel electrophoresis (DGGE) profiling of selected bacterial communities were also conducted. Microbial community function was determined using enzyme assays of five major groups of enzymes, namely (i) dehydrogenase; (ii) β-glucosidase; (iii) acid phosphatase, (iv) alkaline phosphatase and (v) urease. Plant species results were then brought into context with microbiological diversity and functionality results using multivariate statistics. Physical and chemical parameters of the collected soil samples revealed patterns present along the urbanization gradient. The pH values were mostly higher in the sub-urban and urban sites than in the rural sites. Electrical conductivity values were generally highest in the sub-urban sites. Plant species composition revealed trends along the urbanization gradient. Ordinations clearly grouped the plant species into rural, sub-urban and urban groups regarding plant species composition. Rural sites had the highest number of plant species. Shannon-Weaver values regarding the plant diversity supported the plant species composition data indicating higher plant diversity in the rural areas, followed by the sub-urban and the urban areas. Plant structural data indicated that forbs were most numerous in the rural sites, and less so in the urban sites. Higher average aerobic heterotrophic bacterial levels were present in the urban soil samples. The bacterial levels were lower in the sub-urban and rural soil samples. Subsequent identification of the dominant bacteria in the soil samples revealed organisms of the genus Bacillus dominated the aerobic heterotrophic bacterial communities in the soil samples. Bacillus species dominated the soil samples along the urbanization gradient. Shannon-Weaver indices based on culture-dependent methods indicated that urban sites had the highest biodiversity. These results could have been exaggerated, because of an overestimation of the number of bacterial morphotypes present in samples. Fungal levels were higher in the soil from samples collected at the rural samples sites. The culture-independent method (DGGE) was not optimized and inconclusive results were obtained. Enzyme assays revealed that potential dehydrogenase, β-glucosidase and urease activity followed a trend along the urbanization gradient, with urban samples registering the highest values and rural sites the lowest. Enzymes involved in carbohydrate catabolism (β-glucosidase and dehydrogenase) registered significantly higher potential activity in urban sites than the sub-urban and rural sites. The results could indicate that urban sites have the potential to lose carbon at higher rates than the rural sites. This aspect may need further investigation. Higher potential urease activity could indicate higher N-cycling in the urban soil environment. Ordination results for soil-, plant- and microbial diversity as well as microbial functionality indicated certain trends along the urbanization gradient. Plant species composition and structure data indicated that urbanization has a definite effect on the plant communities in the urban ecosystem. Results regarding aerobic heterotrophic bacteria populations and potential enzyme activity of the dehydrogenase, β-glucosidase (both active in the carbon cycle) and urease (active in the nitrogen cycle) illustrated clear trends along the urbanization gradient. In conclusion, results indicated that urbanization has an effect on plant species composition, and the population and function of aerobic heterotrophic bacteria and the fungal population. Furthermore, this study demonstrated the potential of using microbial diversity and activity as tools to investigate carbon utilization and storage along an urban-rural gradient. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2011
4

Investigation of the microbial diversity and functionality of soil in fragmented South African grasslands along an urbanization gradient / Jacobus Petrus Jansen van Rensburg

Van Rensburg, Jacobus Petrus Jansen January 2010 (has links)
The diversity of microorganisms and the influence of their enzymatic activities in soil are critical to the maintenance of good soil health. Changes in these parameters may be the earliest predictors of soil quality changes, potentially indicating anthropogenic influences. The goal of this study was to investigate the soil microbial diversity and function of grasslands along an urbanization gradient. Soil samples were collected in the Potchefstroom municipal area, South Africa, at specific sites. Sampling sites were described as urban, suburban and rural - according to the V-I-S (Vegetation-Impervious surface-Soil) model of Ridd (1995). Soil samples were collected over a warmer, wet season (May) and a colder, dry season (August) over two years (2007 and 2008). Collected soil samples were characterised using certain physical and chemical parameters. Plant species composition and abundance were determined at each site, along with basic site data (soil compaction, percentage ground cover, percentage bare ground, percentage organic material present). The Shannon-Weaver diversity index was used to calculate biodiversity values for all the investigated sites regarding collected plant species composition. The microbial component of the soil was quantified and characterized using culture-dependent and culture-independent techniques. Culture-dependent techniques included the investigation of the aerobic heterotrophic bacteria and fungi. Organisms were plated out on different media, and the bacterial component was broadly grouped using morphology. Dominant organisms were identified by sequencing of PCR amplified 16S ribosomal DNA fragments. Shannon-Weaver index for bacterial diversity was determined for each of the sites. Denaturing gradient gel electrophoresis (DGGE) profiling of selected bacterial communities were also conducted. Microbial community function was determined using enzyme assays of five major groups of enzymes, namely (i) dehydrogenase; (ii) β-glucosidase; (iii) acid phosphatase, (iv) alkaline phosphatase and (v) urease. Plant species results were then brought into context with microbiological diversity and functionality results using multivariate statistics. Physical and chemical parameters of the collected soil samples revealed patterns present along the urbanization gradient. The pH values were mostly higher in the sub-urban and urban sites than in the rural sites. Electrical conductivity values were generally highest in the sub-urban sites. Plant species composition revealed trends along the urbanization gradient. Ordinations clearly grouped the plant species into rural, sub-urban and urban groups regarding plant species composition. Rural sites had the highest number of plant species. Shannon-Weaver values regarding the plant diversity supported the plant species composition data indicating higher plant diversity in the rural areas, followed by the sub-urban and the urban areas. Plant structural data indicated that forbs were most numerous in the rural sites, and less so in the urban sites. Higher average aerobic heterotrophic bacterial levels were present in the urban soil samples. The bacterial levels were lower in the sub-urban and rural soil samples. Subsequent identification of the dominant bacteria in the soil samples revealed organisms of the genus Bacillus dominated the aerobic heterotrophic bacterial communities in the soil samples. Bacillus species dominated the soil samples along the urbanization gradient. Shannon-Weaver indices based on culture-dependent methods indicated that urban sites had the highest biodiversity. These results could have been exaggerated, because of an overestimation of the number of bacterial morphotypes present in samples. Fungal levels were higher in the soil from samples collected at the rural samples sites. The culture-independent method (DGGE) was not optimized and inconclusive results were obtained. Enzyme assays revealed that potential dehydrogenase, β-glucosidase and urease activity followed a trend along the urbanization gradient, with urban samples registering the highest values and rural sites the lowest. Enzymes involved in carbohydrate catabolism (β-glucosidase and dehydrogenase) registered significantly higher potential activity in urban sites than the sub-urban and rural sites. The results could indicate that urban sites have the potential to lose carbon at higher rates than the rural sites. This aspect may need further investigation. Higher potential urease activity could indicate higher N-cycling in the urban soil environment. Ordination results for soil-, plant- and microbial diversity as well as microbial functionality indicated certain trends along the urbanization gradient. Plant species composition and structure data indicated that urbanization has a definite effect on the plant communities in the urban ecosystem. Results regarding aerobic heterotrophic bacteria populations and potential enzyme activity of the dehydrogenase, β-glucosidase (both active in the carbon cycle) and urease (active in the nitrogen cycle) illustrated clear trends along the urbanization gradient. In conclusion, results indicated that urbanization has an effect on plant species composition, and the population and function of aerobic heterotrophic bacteria and the fungal population. Furthermore, this study demonstrated the potential of using microbial diversity and activity as tools to investigate carbon utilization and storage along an urban-rural gradient. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2011
5

Caracterização funcional e estrutural do sistema Tiorredoxina mitocondrial de Saccharomyces cerevisiae / Functional and structural characterization of the mitochondrial thioredoxin system from Saccharomyces cerevisiae

Nakamatsu, Eduardo Hiroshi 14 September 2012 (has links)
NADPH, tiorredoxina e tioredoxina redutase compõem o sistema tiorredoxina, estão envolvidos na redução de ligações específicas de dissulfetos que desempenham um grande número de funções biológicas, tais como: síntese de DNA, defesa contra o estresse oxidativo, apoptose e sinalização redox. Tem sido demonstrado que as interações tioredoxina redutase-tiorredoxina são espécies específicas, sendo assim, investigamos aqui a especificidade dos substratos da tioredoxina redutase 2 mitocondrial (ScTrxR2) de Saccharomyces cerevisiae frente a outras tioredoxinas. ScTrxR2 especificamente reduziu as tiorredoxinas de levedura (tiorredoxina 1 = ScTrx1, tiorredoxina 2 = ScTrx2 e tiorredoxina = ScTrx3), mas não conseguiu reduzir a tiorredoxina de Homo sapiens e a de Escherichia coli. Além disso, ScTrxR2 exibiu eficiência catalítica semelhante para ScTrx3, que está localizado na mitocôndria e ScTrx1 e ScTrx2 que estão localizadas no citosol. Para compreender as características deste fenômeno, resolvemos a estrutura cristalográfica da ScTrxR2 a 1,9 Å de resolução por meio de substituição molecular utilizando as coordenadas de ScTrxR1 (PDB Id = 3ITJ) como modelo (Oliveira et al., 2010). A ScTrxR2 é uma proteína de dois domínios (domínio de ligação do NADPH e domínio de ligação do FAD). As tiorredoxinas redutases de baixo peso molecular podem adotar duas conformações: flavina oxidada (FO) e flavina reduzida (FR), estando esta última envolvida na interação física com as tiorredoxinas. A estrutura cristalográfica da ScTrxR2 obtida por nós está na conformação FO. Posteriormente, modelamos a conformação FR (Flavina reduzida) da ScTrxR2, a partir da estrutura do cristal na conformação FO, e utilizando a estrutura cristalográfica da tiorredoxina redutase de E. coli complexada com a tiorredoxina (PDB 1F6M). Pela análises dessas estruturas, levantamos hipóteses de que alguns resíduos de aminoácidos podem estar envolvidos nas interações espécie-específicas entre tiorredoxina redutase e tiorredoxina. Com isso, geramos mutantes sítio dirigidos das Trx de levedura e da ScTrxR2 e através de ensaios enzimáticos e bioquímicos com estas proteínas mutantes estamos testando as hipóteses levantadas sobre possíveis amino ácidos envolvidos em interações entre tiorredoxina e tiorredoxina redutase / NADPH, thioredoxin and thioredoxin reductase, comprising the thioredoxin system, are involved in the reduction of specific disulfides linkages that play a large number of biological roles, such as: DNA synthesis, defense against oxidative stress, apoptosis and redox signaling. It has been shown that thioredoxin reductase-thioredoxin interactions are species-specific, therefore we have investigated here the substrate specificity of mitochondrial Thioredoxin reductase 2 (ScTrxR2) from Saccharomyces cerevisiae towards other thioredoxins. ScTrxR2 specifically reduced yeast thioredoxins (thioredoxin 1 = ScTrx1, thioredoxin 2 = ScTrx2 and thioredoxin = ScTrx3), but failed to reduce thioredoxin from Homo sapiens and from Escherichia coli. Furthermore, ScTrxR2 displayed similar catalytic efficiency towards ScTrx3, which is located in the mitochondria and ScTrx1 and ScTrx2 that are located in the cytosol. To understand the features of this phenomenon, we have solved the crystallographic structure of ScTrxR2 at 1,9Å resolution through molecular replacement using ScTrxR1 as search model (Oliveira et al., 2010)1. ScTrxR2 is a two-domain protein (NADPH and FAD binding domains). Low molecular weight thioredoxin reductases can adopt two conformations: flavin oxidized (FO) or flavin reduced (FR), the late one physically interacts with thioredoxins. Our ScTrxR2 crystal structure is in the FO conformation. Therefore, we have modeled the ScTrxR2 FR (Flavin reduced) conformation from our FO crystal structure and using the E. coli thioredoxin reductase crystallographic structure complexed with thioredoxin (PDB code 1F6M). Then, we have raised hypothesis that some amino acid residues that may be involved in the thioredoxin reductase-thioredoxin interactions. Next, site-directed mutants of yeast Trxs and ScTrx2 were generated. Through enzymatic and biochemical assays with these mutant proteins we are testing the hypothesis generated by structural analysis
6

Caracterização funcional e estrutural do sistema Tiorredoxina mitocondrial de Saccharomyces cerevisiae / Functional and structural characterization of the mitochondrial thioredoxin system from Saccharomyces cerevisiae

Eduardo Hiroshi Nakamatsu 14 September 2012 (has links)
NADPH, tiorredoxina e tioredoxina redutase compõem o sistema tiorredoxina, estão envolvidos na redução de ligações específicas de dissulfetos que desempenham um grande número de funções biológicas, tais como: síntese de DNA, defesa contra o estresse oxidativo, apoptose e sinalização redox. Tem sido demonstrado que as interações tioredoxina redutase-tiorredoxina são espécies específicas, sendo assim, investigamos aqui a especificidade dos substratos da tioredoxina redutase 2 mitocondrial (ScTrxR2) de Saccharomyces cerevisiae frente a outras tioredoxinas. ScTrxR2 especificamente reduziu as tiorredoxinas de levedura (tiorredoxina 1 = ScTrx1, tiorredoxina 2 = ScTrx2 e tiorredoxina = ScTrx3), mas não conseguiu reduzir a tiorredoxina de Homo sapiens e a de Escherichia coli. Além disso, ScTrxR2 exibiu eficiência catalítica semelhante para ScTrx3, que está localizado na mitocôndria e ScTrx1 e ScTrx2 que estão localizadas no citosol. Para compreender as características deste fenômeno, resolvemos a estrutura cristalográfica da ScTrxR2 a 1,9 Å de resolução por meio de substituição molecular utilizando as coordenadas de ScTrxR1 (PDB Id = 3ITJ) como modelo (Oliveira et al., 2010). A ScTrxR2 é uma proteína de dois domínios (domínio de ligação do NADPH e domínio de ligação do FAD). As tiorredoxinas redutases de baixo peso molecular podem adotar duas conformações: flavina oxidada (FO) e flavina reduzida (FR), estando esta última envolvida na interação física com as tiorredoxinas. A estrutura cristalográfica da ScTrxR2 obtida por nós está na conformação FO. Posteriormente, modelamos a conformação FR (Flavina reduzida) da ScTrxR2, a partir da estrutura do cristal na conformação FO, e utilizando a estrutura cristalográfica da tiorredoxina redutase de E. coli complexada com a tiorredoxina (PDB 1F6M). Pela análises dessas estruturas, levantamos hipóteses de que alguns resíduos de aminoácidos podem estar envolvidos nas interações espécie-específicas entre tiorredoxina redutase e tiorredoxina. Com isso, geramos mutantes sítio dirigidos das Trx de levedura e da ScTrxR2 e através de ensaios enzimáticos e bioquímicos com estas proteínas mutantes estamos testando as hipóteses levantadas sobre possíveis amino ácidos envolvidos em interações entre tiorredoxina e tiorredoxina redutase / NADPH, thioredoxin and thioredoxin reductase, comprising the thioredoxin system, are involved in the reduction of specific disulfides linkages that play a large number of biological roles, such as: DNA synthesis, defense against oxidative stress, apoptosis and redox signaling. It has been shown that thioredoxin reductase-thioredoxin interactions are species-specific, therefore we have investigated here the substrate specificity of mitochondrial Thioredoxin reductase 2 (ScTrxR2) from Saccharomyces cerevisiae towards other thioredoxins. ScTrxR2 specifically reduced yeast thioredoxins (thioredoxin 1 = ScTrx1, thioredoxin 2 = ScTrx2 and thioredoxin = ScTrx3), but failed to reduce thioredoxin from Homo sapiens and from Escherichia coli. Furthermore, ScTrxR2 displayed similar catalytic efficiency towards ScTrx3, which is located in the mitochondria and ScTrx1 and ScTrx2 that are located in the cytosol. To understand the features of this phenomenon, we have solved the crystallographic structure of ScTrxR2 at 1,9Å resolution through molecular replacement using ScTrxR1 as search model (Oliveira et al., 2010)1. ScTrxR2 is a two-domain protein (NADPH and FAD binding domains). Low molecular weight thioredoxin reductases can adopt two conformations: flavin oxidized (FO) or flavin reduced (FR), the late one physically interacts with thioredoxins. Our ScTrxR2 crystal structure is in the FO conformation. Therefore, we have modeled the ScTrxR2 FR (Flavin reduced) conformation from our FO crystal structure and using the E. coli thioredoxin reductase crystallographic structure complexed with thioredoxin (PDB code 1F6M). Then, we have raised hypothesis that some amino acid residues that may be involved in the thioredoxin reductase-thioredoxin interactions. Next, site-directed mutants of yeast Trxs and ScTrx2 were generated. Through enzymatic and biochemical assays with these mutant proteins we are testing the hypothesis generated by structural analysis
7

Etude des réactions enzymatiques par électrophorèse capillaire / The study of enzymatic reactions by capillary electrophoresis

Nehme, Hala 17 December 2013 (has links)
Les enzymes sont les catalyseurs de toutes les réactions biochimiques. Leur dérégulation peut être impliquée dans de nombreuses pathologies graves. L’étude de ces réactions est importante pour dépister les anomalies, mieux comprendre le fonctionnement des enzymes et rechercher des modulateurs de leur activité. Le présent travail de thèse présente différents types d’essais enzymatiques basés sur l’électrophorèse capillaire pour étudier la cinétique d’enzymes variées. Le mode pré-capillaire où la réaction enzymatique est effectuée à l’extérieur du capillaire et les essais homogènes en-ligne en mode discontinu où la réaction est réalisée dans le capillaire, sont appliqués. Les méthodes développées sont optimisées pour assurer un mélange optimal des réactifs et une bonne séparation électrophorétique. Les constantes cinétiques et d’inhibition (Vmax, Km et IC50) de la réaction enzymatique sont déterminées et comparées à celles obtenues par les techniques classiques. Pour les essais en-ligne, plusieurs types de mélange (par application d’un champ électrique, par diffusion longitudinale ou diffusion transversale) des créneaux de réactifs sont utilisés selon le système enzymatique étudié. Finalement, jusqu’à quatre réactifs injectés successivement dans le capillaire sont mélangés avec succès. De nombreux essais sont effectués sur des matrices complexes (cellules, extraits de plantes). Le criblage d’inhibiteurs de référence et de synthèse est réalisé sur plusieurs kinases humaines : CDK1/cycline B, CDK5/p25, DYRK1A, GSK3!, PI3K, Akt et mTOR. Les essais développés se sont avérés être simples, rapides, quantitatifs, économes en réactifs et répétables. / Enzymes catalyze all enzymatic reactions. Their deregulation can be involved in several severe diseases. The study of these reactions is important to detect anomalies, to better understand enzyme functioning and to seek modulators of their activity. This thesis presents capillary electrophoresis based enzymatic assays developed to study kinetics of various enzymes. The pre-capillary mode in which the enzymatic reaction occurs outside the capillary and the incapillary plug-plug mode of homogenous assays where the reaction is performed inside the capillary are applied. The methods developed are optimized to ensure optimum reactant mixing and a good electrophoretic separation. The kinetic and inhibition constants (Vmax, Km and IC50) of the enzymatic reaction are determined by these assays and compared to the results obtained using conventional techniques. For in-capillary assays, several mixing types (by application of an electric field, by longitudinal diffusion or transverse diffusion) of the reactant plugs are used depending on the enzymatic system studied. Finally, up to four reactants injected successively in the capillary are successfully mixed. Many assays are performed on complex matrices (cells, plant extracts). Screening of referenced and synthesized inhibitors on several human kinases: CDK1/cyclin B, CDK5/p25, DYRK1A, GSK3!, PI3K, Akt and mTOR are performed. Developed assays proved to be quantitative, simple, economic, fast and robust.
8

Biorreatores capilares de NTPDase-1 de Trypanosoma cruzi: desenvolvimento e aplicação na triagem de inibidores seletivos / Capillary bioreactors of NTPDase-1 Trypanosoma cruzi: Development and application in the selective inhibitors screening 2014.

Calil, Felipe Antunes 26 May 2014 (has links)
Uma das estratégias utilizadas no desenvolvimento de novas drogas envolve a descoberta de compostos que modulem a atividade de enzimas, importantes no processo infeccioso de patógenos. Uma abordagem interessante na triagem de novos ligantes é o uso de métodos baseados na imobilização de enzimas em suportes cromatográficos acoplados a sistemas de cromatografia líquida. O uso de IMERs (Immobilized Enzyme Reactors) como uma fase estacionária acoplado a sistemas de cromatografia líquida de alta eficiência consiste em uma estratégia para triagem de compostos rápida e eficiente e tem vantagens em relação ao uso de enzimas em solução. A enzima NTPDase-1 de Trypanosoma cruzi age como um facilitador da infecção do patógeno, inibindo assim a resposta imune do hospedeiro, permitindo uma infecção silenciosa, o que sugere seu uso como um bom alvo na busca por inibidores. Neste trabalho, a enzima NTPDase-1 foi imobilizada na parede interna de capilares de sílica fundida formando ICERs (Immobilized Capillary Enzyme Reactors). Estudos das condições de uso destes biorreatores juntamente com o desenvolvimento de um método cromatográfico multidimensional, foram realizados e validados. A otimização do método cromatográfico e sua validação, apresentaram ótimos resultados em relação aos valores obtidos para os parâmetros avaliados para métodos bioanalíticos. A imobilização da enzima foi realizada com sucesso, sendo possível a detecção da atividade catalítica no sistema cromatográfico (TcNTPDase1-ICER). Foi realizado também, o estudo cinético para ATP no TcNTPDase1-ICER, obtendo-se KM de 0,317 ± 0,044 mM, que comparado com estudos em solução, KM de 0,096 mM, ainda apresenta grande afinidade pelo substrato. / One of the strategies used in the development of new drugs involves the discovery of compounds that modulate the activity of enzymes, important in the infectious pathogens process. An interesting approach in the screening of new ligands is the use of methods based on immobilization of enzymes in chromatographic supports coupled to liquid chromatography systems. The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems consist in a strategy to a fast and efficient compounds screening and it has advantages comparing to the use of enzymes in solution. The enzyme NTPDase-1 Trypanosoma cruzi acts as a pathogen infection facilitator, thus inhibits the host immune response allowing a silent infection, suggesting its use as a good target in the search for inhibitors. In this paper, the enzyme NTPDase-1 was immobilized for the manufacturing of ICERs (Immobilized Capillary Enzyme Reactors). Studies of conditions to the use of these bioreactors in the ligands screening along with the development of a multidimensional chromatographic method were performed and validated. The chromatographic method optimization and validation, presented excellent results, relating to the obtained values, from evaluated parameters in bioanalytical methods. The enzyme immobilization was successfully performed, being possible to detect the catalytic activity in the chromatographic system (TcNTPDase1-ICER). The kinetic study for the substrate ATP was also performed in the TcNTPDase1-ICER, obtaining KM of 0.317 ± 0.044 mM, which in comparison with studies in solution KM of 0.096 mM, still presents high affinity for the substrate.
9

Plataformas de baixo custo à base de papel para testes imunodiagnósticos e enzimáticos / Low-cost paper-based platforms for immunodiagnostic and enzymatic testing

Nascimento, Thiago Mazzú do 09 December 2016 (has links)
Os imunoensaios e os ensaios bioquímicos são amplamente utilizados em clinica médica. Os dispositivos fabricados em papel devido ao seu baixo custo, portabilidade, todas as etapas serem realizadas em temperatura ambiente, e possibilidade da produção local dos dispositivos, tornam-se ideais para serem aplicados em regiões carentes. Assim, desenvolvemos um ensaio imunocromatográfico que permitiu a detecção de IgG de coelho em um dispositivo com uma única camada de papel impressa por cera, mostrando que esse protótipo tem potencial de ser aplicado em diferentes ensaios imunológicos. Pela primeira vez foi utilizado um teste enzimático colorimétrico (sarcosina oxidase, peroxidase e o indicador redox (ABTS) em plataforma de papel, impressa por cera, para detecção de sarcosina, o qual detectou um potencial marcador de tumor de câncer de próstata, a sarcosina, com limite de detecção (LD) = 0,21 mmol L-1 e limite de quantificação (LQ) = 0,61 mmol L-1, constatando que a intensidade da cor formada foi proporcional a concentração de sarcosina presente na amostra. Os imunoensaios em papel se mostraram extremamente versáteis, capazes de detectar diferentes analitos. O primeiro dispositivo foi capaz de detectar toxoplasmose (IgG contra T. gondii presente nas amostras). A avaliação da performance do teste nos forneceu um cut-off =21,73 U.A, sensibilidade = 0,96, especificidade = 0,87, AUC = 0,97, além de uma criação de uma zona cinza utilizando uma tolerância em porcentagem sobre a o cut-off de 15%. Desenvolvemos também uma macro no excel qye calcula a acurácia, m-Acuraccy, a qual nos forneceu um valor de 0,88 U.A. O segundo dispositivo permitiu a detecção do marcador tumoral CEA, através de um ensaio do tipo sanduíche, com um cut-off =68,28 U.A, sensibilidade = 0,86, especificidade = 1, AUC = 0,97. A tolerância em porcentagem sobre a o cut-off para a criação da zona cinza foi de 12%, e a m-Acuraccy calculou uma acurácia de 0,90 U.A. Pela primeira vez, foi aplicada essa completa avaliação estatística em testes em papel. Mais do que isso, trazemos com a m-Acuraccy uma nova forma de calcular a acurácia, com grande inovação na clínica médica. Portanto, torna-se evidente o grande potencial que os dispositivos fabricados em papel possuem para ser aplicados como ferramentas diagnósticas. / Immunoassays and bioassays are broadly used in clinical medicine. Paper-based devices are ideal to be used in remote regions due to their low-cost, portability and the possibility of in loco manufacture. Paper-based immunoassays are extremely versatile, capable of detecting distinct analytes: initially we have developed an immunochromatographic assay to detect rabbit IgG in a paper-based device fabricated using wax printing technology, and we have shown that this prototype has potential to be applied in distinct immunoassays. The second developed paper-based device was an enzymatic colorimetric assay for the detection of a potential prostate cancer biomarker - sarcosine (sarcosine oxidase, peroxidase and redox indicator (ABTS)), obtaining good figures or merit (LOD = 0.21 mmol L-1; LOQ = 0.61 mmol L-1, r² = 0.890). The third developed paper-based device was capable of detecting toxoplasmosis (IgG against Toxoplasma gondii in human serum samples). The performance evaluation showed a cut-off = 21.73 A.U., sensitivity = 0.96, specificity = 0.87, AUC = 0.97, besides defining the gray zone as the zone comprehended in-between 15% over the cut-off value. We also have developed a Microsoft Excel® macro to calculate diagnostic test\'s accuracy - m-Accuracy - that is a new way to calculate accuracy with great innovation for clinical medicine, which resulted in an accuracy of 0.88. for toxoplasmosis assay. The fourth developed paper-based device was used to detect CEA tumor biomarker using a sandwich ELISA assay, with a cut-off = 68.28 A.U., sensitivity = 0.86, specificity = 1.0, AUC = 0.97. The defined gray zone to this test was the zone comprehended in-between 12% over the cut-off value, with an accuracy of 0.90. To the best of our knowledge, this is the first complete statistical evaluation of paper-based diagnostic devices, which showed the great potential of this technology to be used as a new point-of care diagnostic tool.
10

Biorreatores capilares de NTPDase-1 de Trypanosoma cruzi: desenvolvimento e aplicação na triagem de inibidores seletivos / Capillary bioreactors of NTPDase-1 Trypanosoma cruzi: Development and application in the selective inhibitors screening 2014.

Felipe Antunes Calil 26 May 2014 (has links)
Uma das estratégias utilizadas no desenvolvimento de novas drogas envolve a descoberta de compostos que modulem a atividade de enzimas, importantes no processo infeccioso de patógenos. Uma abordagem interessante na triagem de novos ligantes é o uso de métodos baseados na imobilização de enzimas em suportes cromatográficos acoplados a sistemas de cromatografia líquida. O uso de IMERs (Immobilized Enzyme Reactors) como uma fase estacionária acoplado a sistemas de cromatografia líquida de alta eficiência consiste em uma estratégia para triagem de compostos rápida e eficiente e tem vantagens em relação ao uso de enzimas em solução. A enzima NTPDase-1 de Trypanosoma cruzi age como um facilitador da infecção do patógeno, inibindo assim a resposta imune do hospedeiro, permitindo uma infecção silenciosa, o que sugere seu uso como um bom alvo na busca por inibidores. Neste trabalho, a enzima NTPDase-1 foi imobilizada na parede interna de capilares de sílica fundida formando ICERs (Immobilized Capillary Enzyme Reactors). Estudos das condições de uso destes biorreatores juntamente com o desenvolvimento de um método cromatográfico multidimensional, foram realizados e validados. A otimização do método cromatográfico e sua validação, apresentaram ótimos resultados em relação aos valores obtidos para os parâmetros avaliados para métodos bioanalíticos. A imobilização da enzima foi realizada com sucesso, sendo possível a detecção da atividade catalítica no sistema cromatográfico (TcNTPDase1-ICER). Foi realizado também, o estudo cinético para ATP no TcNTPDase1-ICER, obtendo-se KM de 0,317 ± 0,044 mM, que comparado com estudos em solução, KM de 0,096 mM, ainda apresenta grande afinidade pelo substrato. / One of the strategies used in the development of new drugs involves the discovery of compounds that modulate the activity of enzymes, important in the infectious pathogens process. An interesting approach in the screening of new ligands is the use of methods based on immobilization of enzymes in chromatographic supports coupled to liquid chromatography systems. The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems consist in a strategy to a fast and efficient compounds screening and it has advantages comparing to the use of enzymes in solution. The enzyme NTPDase-1 Trypanosoma cruzi acts as a pathogen infection facilitator, thus inhibits the host immune response allowing a silent infection, suggesting its use as a good target in the search for inhibitors. In this paper, the enzyme NTPDase-1 was immobilized for the manufacturing of ICERs (Immobilized Capillary Enzyme Reactors). Studies of conditions to the use of these bioreactors in the ligands screening along with the development of a multidimensional chromatographic method were performed and validated. The chromatographic method optimization and validation, presented excellent results, relating to the obtained values, from evaluated parameters in bioanalytical methods. The enzyme immobilization was successfully performed, being possible to detect the catalytic activity in the chromatographic system (TcNTPDase1-ICER). The kinetic study for the substrate ATP was also performed in the TcNTPDase1-ICER, obtaining KM of 0.317 ± 0.044 mM, which in comparison with studies in solution KM of 0.096 mM, still presents high affinity for the substrate.

Page generated in 0.0494 seconds