• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 2
  • 2
  • Tagged with
  • 45
  • 45
  • 41
  • 36
  • 23
  • 14
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Assessment and Control of Virological Risk in Reclaimed Water Treated by Soil Aquifer Treatment / 土壌浸透処理を介した再生水飲用に伴う病原ウイルスの感染リスク評価

Thuangsit, Denpetkul 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19983号 / 工博第4227号 / 新制||工||1654(附属図書館) / 33079 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 伊藤 禎彦, 教授 米田 稔, 准教授 西村 文武 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
12

Quantitative microbial risk assessment of small water supply systems with simultaneous detection of pathogenic bacteria / 小規模水供給システムにおける病原細菌の一斉検出法を活用した定量的微生物リスク評価

Zeng, Jie 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24898号 / 工博第5178号 / 新制||工||1988(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 伊藤 禎彦, 教授 松田 知成, 教授 越後 信哉 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
13

Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 and the Efficacy of Ultraviolet Germicidal Irradiaton (UVGI) Systems

Haiying Cui (13163628) 28 July 2022 (has links)
<p>To assess the performance of both treatment on reducing the infection risk, this study developed the Indoor Air Quality (IAQ) model that simulates the dynamics of airborne infective SARS-CoV-2 in a 500 m3 with or without mechanical ventilation and UV system. Then this model was linked to a quantitative microbial risk assessment (QMRA) to allow for estimation of the risk of disease transmission for a given treatment condition.</p>
14

A Risk Assessment Framework to Evaluate the Effect of Climate Change on Drinking Water Quality / Ett ramverk för riskbedömning för att utvärdera effekten av klimatförändringar på dricksvattenkvaliteten

Gusain, Shivam January 2022 (has links)
The impact of climate change on drinking water is one of the fastest-growing challenges within the water sector. Microbial contamination of drinking water has been a serious issue for decades now and will exacerbate in the coming future. Until recently the impact of climate change was only evaluated qualitatively and there has been a growing need for a quantitative risk assessment. This review covers different ways of incorporating the effects of climate change into the risk assessment framework. A comprehensive search through two databases was conducted resulting in 596 citations being screened for relevance, of which 23 were confirmed as relevant. Ten risk assessment frameworks and 3 tools obtained from this review were used for the comparative study with the Swedish QMRA tool. Data from multiple frameworks and tools were extracted to identify potential additions required for the improvement of the Swedish tool. Two approaches, i.e. data-driven and process-based, were identified and the foundation for a new framework was set up. Two pathways to implement these approaches were laid out with the first being the addition of new modules to the existing tool and the second being the use of hydrodynamic and water quality models to predict the impact of climate change on infection risks.
15

Improving microbial fate and transport modeling to support TMDL development in an urban watershed

Liao, Hehuan 30 April 2015 (has links)
Pathogen contamination, typically quantified by elevated levels of fecal indicator bacteria (FIB), remains the leading cause of surface water-quality impairments in the United States. Continuous watershed-scale models are typically employed to facilitate Total Maximum Daily Load (TMDL) restoration efforts. Due to limited understanding of microbial fate and transport, predictions of FIB concentrations are associated with considerable uncertainty relative to other water-quality contaminants. By focusing on a data-rich instrumented urban watershed, this study aims to improve understanding of microbial fate and transport processes. Weekly FIB concentrations in both the water column and streambed sediments were monitored for one year, and statistical correlations with hydrometeorological and physicochemical variables were identified. An intensive six storm intra-sampling campaign quantified and contrasted loading trends of both traditional regulatory FIB and emerging Microbial Source Tracking (MST) markers. Together, these intensive monitoring efforts facilitated evaluation of the impacts of bacteria-sediment interactions on the predictions of daily FIB concentrations in Hydrological Simulation Program-Fortran (HSPF) over multiple years. While superior overall model performance was demonstrated as compared to earlier efforts, the inclusion of bacteria-sediment interactions did not improve performance. Large wet-weather microbial loading appears to have dwarfed the effects of FIB release and resuspension from sediment. Although wet-weather loading is generally considered as a primary source of waterbody microbial loads, dry-weather periods are more directly associated with public health concern, which may be a more suitable area for future model-refinement efforts. Site evaluation is critical to determine whether the added model complexity and effort associated with partitioning phases of FIB can be sufficiently offset by gains in predictive capacity. Finally, a stochastic framework to translate simulated daily FIB concentrations into estimates of human illness risks is presented that can be can be readily integrated into existing TMDLs. As even small concentrations of FIB from human sources are associated with great risk, and monitoring efforts indicated moderate/high levels of human-associated MST marker in this watershed, remediation efforts to protect public health would be best directed toward infrastructure improvements. Uncertainty analysis indicates more site-specific knowledge of pathogen presence and densities would best improve the estimation of illness risks. / Ph. D.
16

Transfer of Microorganisms from Fomites to Hands and Risk Assessment of Contaminated and Disinfected Surfaces

Lopez, Gerardo Urquijo January 2013 (has links)
It is now widely accepted that surface contamination plays an important role in the transmission of both respiratory and gastrointestinal infections in the domestic environment and community setting. The efficiency of transfer of a pathogen to the hand from a fomite is important in modeling transmission in microbial risk assessment models. The objective of this study was to use published literature to assess the role of fomites and hands in disease transmission, and to conduct fomite-to-finger transfer studies from various porous and nonporous fomites under different relative humidity condition using non-pathogenic strains of Escherichia coli, Staphylococcus aureus, MS2 coliphage, Bacillus thuringiensis spores, and poliovirus 1; to evaluate the persistence of bacteria and viruses on surfaces; to examine bacteria and virus transfer from treated surfaces; and to conduct a foodborne quantitative microbial risk assessment using Campylobacter jejuni from the data obtained in these studies. It was found that numerous factors influence the transfer efficiency of microorganisms, with moisture being the most important, with greater transfer under humid conditions. Other factors influencing transfer include drying time, contact time, pressure, friction, type of material, and porosity of the fomite. Percent transfer was greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer under high relative humidity (40 - 65%) compared to low relative humidity (15 - 32%). Relative humidity and fomite type influenced the survival of all studied organisms; survival was greater on nonporous surfaces than those for porous surfaces. Test organisms were reduced up to 99.997% on the fomites after the surfaces were wiped with a disinfectant wipe. Microbial fomite-to-finger transfer from disinfectant wipe-treated surfaces were, lower than from non-treated surfaces. The disinfectant-wipe intervention reduced the risk of Campylobacter infection, illness, and death by 2 to 3 orders on all fomites. The disinfectant-wipe intervention reduced the annual risk of illness below the reported national average of diagnosed Campylobacteriosis cases 1.3E-04. This risk assessment demonstrates that the use of disinfectant wipes to decontaminate surface areas after chicken preparation reduces the risk of C. jejuni infections up to 99.2%.
17

Analys av dricksvattenrening med metoderna Mikrobiologisk riskanalys (MRA) och God desinfeksjonspraksis (GDP)

Andersson, Nina January 2010 (has links)
Drinking water is produced from raw water and is either from groundwater or surface water. This thesis aims to find out if the cleaning process of raw water is sufficiently effective. This is important because consumers are otherwise at risk of waterborne infection caused by pathogens. There are three groups of pathogens; bacteria, virus and parasite. These have different characteristics which mean that they require different water treatment to be separated. In addition to normal operation, a number of scenarios were examined. This is to investigate how water treatment would do if they became a reality. The thesis has examined Borg´s waterworks operated by Norrköping Vatten AB. It was defined to cover the distance from water source to the consumer. In the work, the model Quantitative Microbial Risk Assessment (QMRA) was used to perform risk analysis by simulating the normal operation and different scenarios of the water purification process. Thus, knowledge can be obtained about the effectiveness of separation by bacteria, viruses and parasites. However, the QMRA-model is considered to contain some flaws and for that reason the Norwegian model called Good Disinfection Practice (GDP) was also used. GDP is a theoretical model which is based on formulas and tables. The model takes into account the raw water quality and also provides deductions for various measures that the water plant possesses to ensure a good supply of water. The results obtained with both models were similar and showed that the water treatment is sufficient for the bacteria, but not viruses and parasites. Both models were considered to be reliable but viruses and parasites are very difficult to analyze, which has resulted in uncertain literature values and hence in the results. The result also showed that neither viruses nor parasites exceeded the limit by so much that more hygienic barriers to the reduction of them are necessary. The conclusion which may be drawn from the fact that no parasites have been detected in the raw water is that the water treatment still might be sufficient. To determine the effects that an exclusion of various barriers may give, the normal operation was simulated and a purification step at a time was excluded. The result showed that the purification steps which are most important to maintain the treatment process are chemical precipitation followed by rapid filtration, slow filtration and disinfection with chlorine. If any of these cleaning steps were to fail, this introduces a large increase in the risk of waterborne disease. The results showed that the chemical precipitation step gave the greatest separation effect on the virus but also on the parasites. However, the slow filtration gave the largest separation of the parasites. Free chlorine had the greatest effect on bacteria. The investigated scenarios were assumed to be wastewater discharges, sewage discharges in relation to flood the nearby pastures, and sewage overflows due to heavy rainfall. The results of the simulated scenarios were the same when it was only bacteria that in all cases produced a result within the limits of the daily infection probability. Both viruses and parasites exceeded both values. However, there were few studies on these and thus literature values needed to be implemented in the QMRA-model. Hence, the uncertainty of the results was great. The QMRA-model also contained deficiencies in the simulation of the discharge of effluents, where the amount of virus was about 1000-10000 times too much. If this problem as well as more specific data for the investigated area, and more Swedish studies were available, a more credible simulation of the scenarios could be implemented.
18

Using quantitative microbial risk assessment to determine if health risk warrants boil water advisories in Newfoundland and Labrador : time for a new approach

Dawe, Paula V. 28 October 2013 (has links)
The effectiveness of Boil Water Advisories (BWAs) as a public health risk management tool is increasingly being questioned. Newfoundland and Labrador's zero-risk policy for issuing BWAs on public drinking water systems has resulted in over 210 active BWAs annually, the majority classified as long-term BWAs. BWAs are more likely to occur on small systems, in communities with low economic capacity, and in communities without a certified operator. No relationship was found relating confirmed cases of water-related illness to BWAs. Quantifiable health risk associated with BWAs was evaluated using Quantitative Microbial Risk Assessment (QMRA). Data on source water pathogen concentrations and epidemiological data was used to evaluate and calibrate the QMRA Model. The study demonstrated the application of QMRA in determining whether health risk warranted issuing a BWA. Eleven recommendations were made on how the province could adopt QMRA in establishing an alternative drinking water risk management and advisory framework.
19

Pepper Mild Mottle Virus as a Surrogate for Enteric Viruses: Implications for Assessing Water Quality

Symonds, Erin Michelle 03 November 2016 (has links)
Less than 10% of the world’s domestic wastewater is disinfected prior to discharge into surface waters; therefore, human exposure to diverse wastewater-related pathogens results in millions of cases of illness each year. Among the enteric pathogens, viruses represent an important group of emerging pathogens and are frequently the cause of food- and water-borne outbreaks of illness. Although the World Health Organization and many government agencies mandate the use of bacterial indicators to identify poor microbial water quality, it is well known that these indicators poorly correlate with fecal pollution contamination events and risk of disease. The field of public health-related environmental microbiology has made significant advances over the last twenty years; however, there is still a need for improved methods to identify poor microbial water quality and manage health risks associated with water-related activities (e.g., recreation, shellfish harvesting, irrigation). Furthermore, it is imperative to effectively detect fecal pollution in the environment as well as determine the extent of pathogen removal during (waste)water treatment to meet the Sustainable Development Goals associated with water and food security as well as the water reuse recommendations by the U.S. National Research Council. This dissertation directly addressed the need to identify an improved viral indicator by exploring the application of pepper mild mottle virus (PMMoV), a virus of dietary origin that is extremely abundant in human feces, as a surrogate for enteric viruses in diverse settings and contexts. Using a reverse transcription quantitative polymerase chain reaction (RT-qPCR) method, PMMoV was compared with other indicators, index surrogates, and reference pathogens for assessing surface water quality in a developed country (Appendix A) and developing country context (Appendix B and C). In addition, the applicability of PMMoV as a (waste)water treatment process indicator was demonstrated in natural treatment systems in developing countries (Appendix C and D) and artificial treatment systems (Appendix E). In all settings, PMMoV always co-occurred with at least one reference pathogen, index organism, and/or indicator; additionally, PMMoV was detected more frequently and in higher concentrations than other reference pathogens and indicators. Three investigations also associated PMMoV detection with predicted human health risks greater than the health benchmark for recreation and water reuse activities (Appendix A, C, and D). Additionally, PMMoV facilitated an improved understanding of virus-particle interactions in wastewater treatment pond systems (Appendix D) and allowed for an improved understanding of virus removal with respect to riverbank filtration systems and wastewater reuse in agriculture (Appendix C). PMMoV was established as a valuable component of the microbial source tracking toolbox in Costa Rica (Appendix B) and appeared to be useful in Bolivia (Appendix C). Finally, a paradigm shift in (waste)water management is occurring, in which routine monitoring is being replaced by a more holistic approach that includes sanitary surveys, targeted water quality monitoring, and exploratory quantitative microbial risk assessment. To support and complement this paradigm shift, field-based, laboratory-free methods are needed to identify and/or infer the presence of enteric viruses (Appendix F). Collectively, all the investigations presented here confirm the use of PMMoV as a surrogate for enteric viruses; however, its utility depends on the context and research question.
20

Quantitative Microbial Risk Assessment of Water Treatment Process for Reducing Chlorinous Odor / カルキ臭低減型浄水処理プロセスにおける定量的微生物リスク評価

Zhou, Liang 24 November 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19372号 / 工博第4117号 / 新制||工||1635(附属図書館) / 32386 / 新制||工||1635 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 伊藤 禎彦, 教授 田中 宏明, 教授 米田 稔 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.4173 seconds