• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 23
  • 14
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 100
  • 35
  • 32
  • 27
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 13
  • 12
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Numerical Study Of Encapsulated Phase Change Material (epcm) Slurry Flow In Microchannels

Kuravi, Sarada 01 January 2009 (has links)
Heat transfer and flow characteristics of phase change material slurry flow in microchannels with constant heat flux at the base were investigated. The phase change process was included in the energy equation using the effective specific heat method. A parametric study was conducted numerically by varying the base fluid type, particle concentration, particle size, channel dimensions, inlet temperature, base heat flux and melting range of PCM. The particle distribution inside the microchannels was simulated using the diffusive flux model and its effect on the overall thermal performance of microchannels was investigated. Experimental investigation was conducted in microchannels of 101 [micro]m width and 533 [micro]m height with water as base fluid and n-Octadecane as PCM to validate the key conclusions of the numerical model. Since the flow is not fully developed in case of microchannels (specifically manifold microchannels, which are the key focus of the present study), thermal performance is not as obtained in conventional channels where the length of the channel is large (compared to length of microchannels). It was found that the thermal conductivity of the base fluid plays an important role in determining the thermal performance of slurry. The effect of particle distribution can be neglected in the numerical model under some cases. The performance of slurry depends on the heat flux, purity of PCM, inlet temperature of the fluid, and base fluid thermal conductivity. Hence, there is an application dependent optimum condition of these parameters that is required to obtain the maximum thermal performance of PCM slurry flows in microchannels.
62

Fluid Dynamics and Inertial Focusing in Spiral Microchannels for Cell Sorting

Nivedita, Nivedita 03 June 2016 (has links)
No description available.
63

Additive Manufacturing of Hydrogels for Vascular Tissue Engineering

Attalla, Rana January 2018 (has links)
One of the major technical challenges with creating 3D artificial tissue constructs is the lack of simple and effective methods to integrate vascular networks within them. Without these vascular-like networks, the cells embedded within the constructs quickly become necrotic. This thesis details the use of a commercially available, low-cost, 3D printer modified with a microfluidic printhead in order to generate instantly perfusable vascular-like networks integrated within gel scaffolds seeded with cells. The printhead featured a coaxial nozzle that allowed the fabrication of hollow, gel tubes (500µm–2mm) that can be easily patterned to create single or multi-layered constructs. Media perfusion of the channels caused a significant increase in cell viability. This microfluidic nozzle design was further modified to allow for multi-axial extrusion in order to 3D print and pattern bi- and tri-layered hollow channel structures. Most available methodologies lack the ability to create multi-layered concentric conduits inside natural extracellular matrices, which would more accurately replicate the hierarchal architecture of biological blood vessels. The nozzle used in this work allowed, for the first time, for these hierarchal structures to be embedded within layers of gels in a fast, simple and low cost manner. This scalable design allowed for versatility in material incorporation, thereby creating heterogeneous structures that contained distinct concentric layers of different cell types and biomaterials. This thesis also demonstrates the use of non-extrusion based 3D biofabrication involving planar processing by means of hydrogel adhesion. There remains a lack of effective adhesives capable of composite layer fusion without affecting the integrity of patterned features. Here, silicon carbide was found for the first time to be an effective and cytocompatible adhesive to achieve strong bonding (0.39±0.03kPa) between hybrid hydrogel films. Multi-layered, heterogeneous constructs with embedded high-resolution microchannels (150µm-1mm) were fabricated in this way. With the new 3D fabrication technology developed in this thesis, gel constructs with embedded arrays of hollow channels can be created and used as potential substitutes for blood vessel networks as well as in applications such as drug discovery models and biological studies. / Thesis / Doctor of Philosophy (PhD) / Additive manufacturing (AM) involves any three-dimensional (3D) fabrication technologies that is used to produce a solid model of a predetermined design. AM techniques have recently been used in tissue engineering applications for fabrication of 3D artificial tissues that resemble architectures and material properties similar to that of the native tissue. Utilizing AM for this purpose presents the advantage of increased control in feature patterning, which leads to the realization of more complex geometries. However, there still remains a lack of simple and effective methods to integrate vascular networks within these 3D artificially engineered scaffolds and tissue constructs. Without these vascular-like networks, the cells embedded within the constructs would quickly die due to a lack of nutrient delivery and waste transport. This remains one of the biggest challenges in true 3D tissue engineering. This thesis presents a number of fast, effective and low-cost AM biofabrication techniques to address this challenge.
64

Capillary Study on Geometrical Dependence of Shear Viscosity of Polymer Melts

Lin, X., Kelly, Adrian L., Woodhead, Michael, Ren, D.Y., Wang, K.S., Coates, Philip D. January 2014 (has links)
No
65

Experimental Evaluation of an Additively Manufactured Straight Mini-Channel Heat Sink for Electronics Cooling

Eidi, Ali Fadhil 23 March 2021 (has links)
The continuous miniaturization of electronic devices and the corresponding increase in computing powers have led to a significant growth in the density of heat dissipation within these devices. This increase in heat generation has challenged conventional air fan cooling and alternative solutions for heat removal are required to avoid overheating and part damage. Micro/Mini channel heat sinks (M/MCHS) that use liquids for heat removal appear as an attractive solution to this problem as they provide large heat transfer area per volume. Mini/microchannels traditionally have suffered from geometrical and material restrictions due to fabrication constraints. An emerging new additive manufacturing technique called binder jetting has the potential to overcome some of those restrictions. In this study, a straight minichannel heat sink is manufactured from stainless steel using binder jetting, and it is experimentally evaluated. The hydraulic performance of the heat sink is tested over a range of Reynolds numbers (150-1200). The comparison between the hydraulic results and standard correlations confirms that the targeted geometry was produced, although the high surface roughness created an early transition from laminar-to-turbulent flow. The heat transfer performance was also experimentally characterized at different heat flux conditions ($3000W/m^2$, $5000W/m^2$, $6500W/m^2$), and a range of Reynolds numbers (150-800). These results indicated that convection heat transfer coefficients on the order of $1000 W/m^2-K$ can be obtained with a simple heat sink design. Finally, the effects of the contact resistance on the results are studied, and contact resistance is shown to have critical importance on the thermal measurements. / Master of Science / The continuous miniaturization of electronic devices and the corresponding increase in computing powers have led to a significant growth in the density of heat dissipation within these devices. This increase in heat generation has challenged conventional air fan cooling and alternative solutions for heat removal are required to avoid overheating and part damage. Micro/Mini channel heat sinks (M/MCHS) that use water instead of air for heat removal appear as an attractive solution to this problem as they provide large heat transfer area per volume due to the small channels. Mini/microchannels are distinguished from conventional channels by the hydraulic diameter, where they range from $10mu m$ to $2mm$. M/MCHS are typically manufactured from a highly conductive metals with the channels fabricated on the surface. However, mini/microchannels traditionally have suffered from geometrical and material restrictions due to fabrication constraints. Complex features like curves or internall channels are difficult or even impossible to manufacture. An emerging new additive manufacturing technique called binder jetting has the potential to overcome some of those restrictions. Binder jetting possess unique advantageous as it uses precise control of a liquid binder applied to a bed of fine powder to create complex geometries Furthermore, it does not require extreme heating during the fabrication process. The advantages of binder jetting include that it is low cost, high speed, can be applied to a variety of materials, and the ability to scale easily in size. In this study, a straight minichannel heat sink is manufactured from stainless steel using binder jetting, and this heat sink is experimentally evaluated. The hydraulic performance of the heat sink is tested over different water flow rates (Reynolds numbers between 150-1200). The comparison between the hydraulic results and standard correlations confirms that the targeted geometry was produced, although the high surface roughness created an early transition from laminar-to-turbulent flow. The surface roughness effect should be considered in future designs of additively manufactured minichannels. The heat transfer performance was also experimentally characterized at different heat flux conditions ($3000W/m^2$, $5000W/m^2$, $6500W/m^2$), and different water flow conditions (Reynolds numbers 150-800). These results indicated that convection heat transfer coefficients on the order of $1000 W/m^2-K$ can be obtained with a simple heat sink design. However, a mismatch between the experimental data and the correlation requires further investigation. Finally, the effects of the contact resistance on the results are studied, and contact resistance is shown to have critical importance on the thermal measurements.
66

Design of Air-cooled Microchannel Condensers for Mal-distributed Air Flow Conditions

Subramaniam, Vishwanath 12 July 2004 (has links)
Air-cooled condensers are routinely designed for a variety of applications, including residential air-conditioning systems. Recent attempts at improving the performance of these heat exchangers have included the consideration of microchannel tube, multilouver fin heat exchangers instead of the more conventional round tube-plate fin designs. In most packaged air-conditioning systems, however, the condenser surrounds the compressor and other auxiliary parts in an outdoor unit, with an induced draft fan at the top of this enclosure. Such a configuration results in significant mal-distribution of the air flow arriving at the condenser, and leads to a decrease in performance. This work addresses the issue of mal-distribution by adapting the air-side geometry to the expected air flow distribution. A microchannel tube, multilouver fin condenser is first designed to transfer the desired heat rejection load for an air-conditioning system under uniform air flow conditions. Tube-side pass arrangements, tube dimensions, and fin and louver geometry are varied to arrive at a minimum mass, 2.54 kg condenser that delivers the desired heat load of 14.5 kW. The design model is then used to predict the performance of the condenser for a variety of air flow distributions across the heat exchanger. It is found that for a 50% air flow mal-distribution, the required condenser mass increases to 2.73 kg. The air-side geometry (fin density and height) of the condenser is then systematically changed to optimally distribute the air-side surface area across the condenser to best address the mal-distributed air flow. It is found that linear fin density and height variations from the mean value of 40% and 20%, respectively, keeping the mean fin density and height the same, reduce the required condenser mass to 2.65 kg even for this mal-distributed air-flow case. The influence of geometry variations on heat transfer coefficients, fan power and other performance measures is discussed in detail to guide the judicious choice of surface area and tube-side flow area allocations for any potential air flow mal-distribution. The results from this study can be used for the design of air-cooled condensers under realistic flow conditions.
67

Microfabricated Fuel Cells To Power Integrated Circuits

Moore, Christopher Wayne 12 May 2005 (has links)
Microfabricated fuel cells have been designed and constructed on silicon integrated circuit wafers using many processes common in integrated circuit fabrication, including sputtering, polymer spin coating, reactive ion etching, and photolithography. Fuel delivery microchannels were made through the use of sacrificial polymers. The characteristics of different sacrificial polymers were studied to find the most suitable for this work. A polypropylene carbonate solution containing a photo-acid generator could be directly patterned with ultraviolet exposure and thermal decomposition. The material that would serve as the fuel cells proton exchange membrane (PEM) encapsulated the microchannels. Silicon dioxide deposited by plasma enhanced chemical vapor deposition (PECVD) at relatively low temperatures exhibited material properties that made it suitable as a thin-film PEM in these devices. By adding phosphorous to the silicon dioxide recipe during deposition, a phosphosilicate glass was formed that had an increased ionic conductivity. Various polymers were tested for use as the PEM or in combination with oxide to form a composite PEM. While it did not work well alone, using Nafion on top of the glass layer to form a dual-layer PEM greatly enhanced the fuel cell performance, including yield and long-term reliability. Platinum and platinum/ruthenium catalyst layers were sputter deposited. Experiments were performed to find a range of thicknesses that resulted in porous layers allowing contact between reactants, catalyst, and the PEM. When using the deposited glasses, multiple layers of catalyst could be deposited between thin layers of the electrolyte, resulting in higher catalyst loading while maintaining porosity. The current and power output were greatly improved with these additional catalyst layers.
68

Experimental Investigation of Compact Evaporators for Ultra Low Temperature Refrigeration of Microprocessors

Wadell, Robert Paul 18 July 2005 (has links)
It is well known that microprocessor performance can be improved by lowering the junction temperature. Two stage cascaded vapor compression refrigeration (VCR) is a mature, inexpensive, and reliable cooling technology that can offer chip temperatures down to ?? C. Recent studies have shown that for a power limited computer chip, there is a non-linear scaling effect that offers a 4.3X performance enhancement at ?? C. The heat transfer performance of a compact evaporator is often the bottleneck in sub-ambient heat removal. For this reason, the design of a deep sub-ambient compact evaporator is critical to the cooling system performance and has not been addressed in the literature. Four compact evaporator designs were investigated as feasible designs - a baseline case with no enhancement structures, micro channels, inline pin fin arrays, and alternating pin fin arrays. A parametric experimental investigation of four compact evaporator designs has been performed aiming at enhancing heat transfer. Each evaporator consists of oxygen free copper and has a footprint of 20 mm x 36 mm, with a total thickness of 3.1 mm. The micro channel evaporator contains 13 channels that are 400 um wide by 1.2 mm deep, and the pin fin evaporators contain approximately 80 pin fins that are 400 um wide by 1.2 mm tall with a pitch of 800 um. Two phase convective boiling of R508b refrigerant was investigated in each evaporator at flow rates of 50 - 70 g/min and saturation temperatures of ??to ??C. Pressure drop and local heat transfer measurements are reported and used to explain the performance of the various evaporator geometries. The results are compared to predictions from popular macro- and micro-channel heat transfer and pressure drop correlations. The challenges of implementing a two stage cascade VCR systems for microprocessor refrigeration are also discussed.
69

Heat Transfer and Pressure Drop During Condensation of Refrigerants in Microchannels

Agarwal, Akhil 20 November 2006 (has links)
Two-phase flow, boiling, and condensation in microchannels have received considerable attention in the recent past due to the growing interest in the high heat fluxes made possible by these channels. This dissertation presents a study on the condensation of refrigerant R134a in small hydraulic diameter (100 < Dh < 160 mm) channels. A novel technique is used for the measurement of local condensation heat transfer coefficients in small quality increments, which has typically been found to be difficult due to the low heat transfer rates at the small flow rates in these microchannels. This method is used to accurately determine pressure drop and heat transfer coefficients for mass fluxes between 300 and 800 kg/m2-s and quality 0 < x < 1 at four different saturation temperatures between 30 and 60oC. The results obtained from this study capture the effect of variations in mass flux, quality, saturation temperature, hydraulic diameter, and channel aspect ratio on the observed pressure drop and heat transfer coefficients. Based on the available flow regime maps, it was assumed that either the intermittent or annular flow regimes prevail in these channels for the flow conditions under consideration. Internally consistent pressure drop and heat transfer models are proposed taking into account the effect of mass flux, quality, saturation temperature, hydraulic diameter, and channel aspect ratio. The proposed models predict 95% and 94% of the pressure drop and heat transfer data within ±25%, respectively. Both pressure drop and heat transfer coefficient increase with a decrease in hydraulic diameter, increase in channel aspect ratio and decrease in saturation temperature. A new non-dimensional parameter termed Annular Flow Factor is also introduced to quantify the predominance of intermittent or annular flow in the channels as the geometric parameters and operating conditions change. This study leads to a comprehensive understanding of condensation in microchannels for use in high-flux heat transfer applications.
70

Design And Simulation Of A Vapor Compression Refrigeration Cycle For A Micro Refrigerator

Yildiz, Seyfettin 01 June 2010 (has links) (PDF)
Cooling of electronic equipments has become an important issue as the advances in technology enabled the fabrication of very small devices. The main challenge in cooling is the space limitation. The use of miniature refrigerators seems to be a solution alternative for the cooling problem. The objective of this study is to design and simulate a vapor compression refrigeration cycle for a micro-scale refrigerator. A MATLAB code is developed for the simulations. The four components of the refrigerator, namely, the condenser, evaporator, compressor and the capillary tube are designed separately. The cycle is successfully completed nearly at the same point where it begins. The cold space temperature, ambient air temperature, condensation and evaporation temperatures, and the evaporator heat load are the predetermined parameters. A fan is used to cool the condenser, and the compressor is selected as isentropic. R-134A is selected as the refrigerant and a simple interpolation code is developed to obtain the thermophysical properties of R-134A. The original design is carried out with an isentropic compressor. For the purpose of comparison, a cycle with a polytropic compressor is also considered. Similarly, two alternative designs for the evaporator are developed and simulated. A second law analysis is performed at the end of the study.

Page generated in 0.0326 seconds