Spelling suggestions: "subject:"microclusters."" "subject:"microcluster.""
31 |
Understanding Superatomic Cluster Tunability for Use as Building Blocks for Extended StructuresAydt, Alexander Paul January 2022 (has links)
This dissertation summarizes my efforts and research in the Roy group to study the tunability of superatoms through ligand effects, create microporous structures from molecular cluster precursors to act as battery materials, and understand the electronic structure governing the interesting magnetic properties of Fe₆S₈(CN)₆, as well as efforts to design novel extended structures utilizing Fe₆S₈(CN)₆.
Chapter 1 serves as an introduction to superatoms. It briefly discusses the quantum nature of small materials and how this gives rise to properties exhibited by superatoms. Properties which will prove important to this dissertation and methods of altering those properties through core composition and ligand choice are explored. Next, an overview of many methods to create extended structures is provided. Select examples of how superatomic clusters have already been used to increase our knowledge of fundamental concepts in science are then discussed. Finally, a brief summary and explanation of how these concepts will be explored in later chapters is given. This chapter is meant to serve as a targeted review with plenty of further reading cited for any incoming students with interest in continuing my projects.
Chapter 2 discusses studies to understand the effects of either replacing PEt₃ ligands with CO ligands or the removal of PEt₃ ligands in the Co₆S₈(PEt₃)ₓ(CO)₆₋ₓ and Co₆S₈(PEt₃)ₓ systems, respectively. It presents a collaborative approach to synthesize a series of clusters for analysis by anion photoelectron spectroscopy and evaluation of results using computational chemistry. A drastic change in the donor/acceptor behavior of the cluster is observed, but surprisingly little change in the HOMO-LUMO gap is observed as the HOMO and LUMO experience similar energetic changes upon ligand removal or substitution.
Chapter 3 presents a practical application for ligand removal of superatomic clusters. I present a synthesis of microspherical, highly porous materials derived from superatomic clusters. These microsphere materials display very different morphology from typical materials made using the same elemental ratio. This altered morphology results in a material which is favorable for use as a battery electrode. Its increased porosity improves its capacity retention upon cycling and at high power. The Co₆S₈(PEt₃)₆ derived material also shows promise as a Na+ ion battery material. In this chapter I also discuss unfinished studies on mixed chalcogenide materials.
Chapter 4 explores the electronic basis for the high magnetic moment of the Fe₆S₈(CN)₆ cluster. Through collaboration with computational chemists, I present evidence of a phenomenon known as dual-subshell filling allowing for two spin channels holding different number of electrons resulting in many unpaired electrons. This cluster is also uniquely prepared for use as an extended material due to its cyanide ligands which may readily be used to form Prussian blue analogs.
Chapter 5 describes efforts to design extended structures using the Fe₆S₈(CN)₆ cluster. Attempts towards Prussian blue analogs, covalently bound clusters using DCNQI, and EDT-TTF-CONH2 utilizing structures are discussed. Detailed notes on the synthesis of [NEt₄]₅[Fe₆S₈(CN)₆] are also provided. 2 structures which have successfully been synthesized, a 4 bridging ligand and a 2 bridging ligand “wire” are described in detail.
In Chapter 6, collaborative efforts to increase our understanding of the cluster building blocks which can function as nanoscale atoms that assemble to form superatomic solids are described. We characterize a representative superatomic cluster, Co₆S₈(PEt₃)₆, in terms of structural, electronic, and magnetic properties using Solid State Nuclear Magnetic Resonance (SSNMR), Density Function Theory (DFT) calculations, and Superconducting Quantum Interference Device (SQUID) measurements. Evidence of delocalized HOMO orbitals and a delocalized spin in the oxidize cluster is shown. The findings presented in this chapter will assist the design of superatomic clusters and state-of-the-art applications, such as single-electron devices.
Finally, Chapter 7 is much shorter than the other chapters as it is used to describe smaller projects which do not fit in the scope of the overall thesis. Magnetic measurements on a compound designed in the Norton lab are described.
|
32 |
Functional Two-Dimensional Superatomic MaterialsHe, Shoushou January 2024 (has links)
This dissertation describes the synthesis of superatomic materials as well as their chemical modifications to tune properties and impart functions.
Chapter 1 gives a general introduction to the topics discussed in the later chapters. The discussion includes superatoms (molecular clusters) and superatomic materials. Chapter 2 discusses the site-selective surface modification of a two-dimensional (2D) superatomic semiconductor Re⁶Se⁸Cl² and its influence on the solution processibility of nanosheets. 2D superatomic Re⁶Se⁸Cl² will continue to be the focus of Chapters 3 and 4.
Chapter 3 discusses my efforts in advancing the surface modification of Re⁶Se⁸Cl² to build catalytically active monolayers on the surface of the superatomic nanosheets. Chapter 4 details an electrochemical doping method to significantly enhance the electrical transport properties of Re⁶Se⁸Cl². In Chapter 5, I will move onto discussing a molecular [Co⁶Se⁸] cluster.
I will detail my efforts on modifying the ligand coordination sphere, as well as its influence on the reactivity and electronic properties.
|
33 |
Atomic metal/polyaniline compositesJonke, Alex P. 20 September 2013 (has links)
It is ideal to theoretically predict the activity of a catalyst. It has been recognized that not only the type of metal, but also its atomic size plays an important role in catalysis. In the past, atomic clusters have been created by sputtering from a sacrificial metal plate and then using a mass selector to choose cluster sizes from 1-233 atoms of gold. This approach has practical limitations. In this thesis, I describe a procedure by which atomic clusters of gold containing 1-8 atoms are deposited in polyaniline as an isolation matrix. My atomic deposition follows a cyclic pathway. Atomic clusters of palladium and atomic alloys of gold and palladium are also deposited in polyaniline using the same process. It is to show that this method will also work for other metals. These composite materials are characterized, and the catalytic activity for alcohol oxidation is evaluated.
This thesis is divided into seven chapters. The first chapter discusses the chemistry of polyaniline for using gold and palladium as catalysts. The technique developed to deposit the atomic clusters is discussed in the second chapter. This technique deposits one atom of metal per imine site on polyaniline, per cycle. The cycle is repeated n-times until a cluster of specified size, Mn, and composition has been synthesized. It is known that polyaniline plays an important role in stabilization of the formed clusters which prevents their aggregation. The optimization of this technique is the topic of the third chapter along with the description of how these composite films are produced. To end this chapter, the composite films are characterized by cyclic voltammetry, Kelvin probe, and X-ray photoelectron spectroscopy.
In chapters 4 and 5, the catalytic activity of the polyaniline/gold composites for the oxidation of alcohols in alkaline media using cyclic voltammetry is evaluated. In chapter 4, the correlation of the electrochemical activity for the oxidation of n-PrOH with the odd-even pattern from the calculated HOMO-LUMO gap energies for the same size clusters is shown. It is shown that the infrared spectrum of polyaniline with different sizes of atomic gold clusters also follows the odd-even pattern. Chapter 5 expands on the discussion of the catalytic oxidation of alcohols. The oxidation of methanol, ethanol, propanol, and butanol is surveyed. The peak currents are again dominated by the odd-even pattern.
In chapter 6, the versatility of the atomic deposition cycle is shown by depositing atomic palladium clusters. The peak currents for the oxidation of n-PrOH by these palladium composite films again follows the predicted pattern of the calculated HOMO-LUMO gap energies for atomic palladium clusters. This chapter also explores bimetallic atomic clusters of gold and palladium. The results indicate that the catalytic activity depends on the orientation of the cluster in the polyaniline matrix. Chapter 7 discusses the oxidation of methanol, ethanol, and isopropanol on AunPd1 bimetallic atomic clusters. The addition of palladium in the cluster increases the peak current densities for the oxidation of both alcohols except for the most stable of the atomic gold clusters, while it inactivated the electrodes for isopropanol. The possible future work for this project is discussed in chapter 8.
Overall, this thesis has developed a novel and unique technique for depositing atomic metal clusters into a polyaniline matrix. The technique is versatile enough to deposit atomic metal clusters other than gold, as shown by creating atomic palladium clusters and atomic bimetallic clusters of gold and palladium. This is extremely useful, since this single technique can produce many different types of atomic catalysts. The composite materials have been shown to be catalytically active for the oxidation of alcohols in alkaline media. This indicates a significant improvement to conserve precious metals while still retaining a high catalytic activity.
|
34 |
Ab initio molecular dynamics studies on the thermal properties of small silver clusters and the thermal decomposition channels of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one.January 1999 (has links)
Yim Wai-leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 73-77). / Abstracts in English and Chinese. / THESIS COMMITTEE --- p.ii / ABSTRACT (English version) --- p.iii / ABSTRACT (Chinese version) --- p.v / ACKNOWLEDGEMENTS --- p.vi / TABLE OF CONTENTS --- p.vii / LIST OF FIGURES --- p.ix / LIST OF TABLES --- p.xi / Chapter CHAPTER 1. --- General Introduction / Chapter Section 1.1 --- Introduction --- p.1 / Chapter Section 1.2 --- Electronic Structure Calculation / Chapter 1.2.1 --- Density Functional Theory --- p.2 / Chapter 1.2.2 --- "Exchange, Correlation and the Local Density Approximation" --- p.4 / Chapter 1.2.3 --- Bloch's Theorem and Plane Wave Basis Set --- p.6 / Chapter 1.2.4 --- The Pseudopotential Approximation --- p.10 / Chapter Section 1.3 --- Molecular Dynamics / Chapter 1.3.1 --- Molecular Dynamics --- p.12 / Chapter 1.3.2 --- Nose Thermostat / Chapter 1.3.2.1 --- Introduction --- p.14 / Chapter 1.3.2.2 --- Feedback Method --- p.15 / Chapter Section 1.4 --- Case Studies / Chapter 1.4.1 --- Thermal properties of small silver clusters --- p.18 / Chapter 1.4.2 --- Thermal decomposition channels of NTO --- p.20 / Chapter CHAPTER 2. --- Ab Initio Molecular Dynamics Study on Agn (n=4-6) / Chapter Section 2.1 --- Introduction --- p.22 / Chapter Section 2.2 --- Computational Method --- p.24 / Chapter Section 2.3 --- Results and Discussion / Chapter 2.3.1 --- Ag2 --- p.26 / Chapter 2.3.2 --- Ag4 --- p.30 / Chapter 2.3.3 --- Ag5 --- p.36 / Chapter 2.3.4 --- Ag6 --- p.45 / Chapter Section 2.4 --- Summary --- p.49 / Chapter CHAPTER 3. --- Ab Initio Molecular Dynamics Study on Thermal Decomposition of NTO / Chapter Section 3.1 --- Introduction --- p.52 / Chapter Section 3.2 --- Computation Details --- p.55 / Chapter Section 3.3 --- Results and Discussion / Chapter 3.3.1 --- Comparison of the Quantum Calculations by VASP and Gaussian98 --- p.56 / Chapter 3.3.2 --- Exploring the Reaction Channels --- p.62 / Chapter 3.3.2.1 --- Hydrogen-transfer Activation --- p.62 / Chapter 3.3.2.2 --- Homolytic Cleavage of C-N02 Bond --- p.63 / Chapter 3.3.2.3 --- Nitro-nitrite Rearrangement --- p.64 / Chapter 3.3.2.4 --- Direct Ring Rupture --- p.64 / Chapter 3.3.3 --- Energetic Consideration --- p.65 / Chapter 3.3.4 --- Activation Barriers --- p.70 / Chapter 3.3.5 --- Summary --- p.72 / REFERENCES --- p.73
|
35 |
Using atomically precise clusters to model materialsBeecher, Alexander Nathaniel January 2016 (has links)
Using two different model systems, this thesis considers the old, but fascinating question: how do atoms or particles possessing a particular set of individual characteristics combine to form assemblies with quite distinct, ensemble characteristics, and how do those characteristics evolve as a function of the size of the assembly? For the last thirty years, numerous experiments studying the emergence of collective material properties have focused on a class of semiconducting, colloidal nanocrystals commonly known as quantum dots, which are notable for the size-dependence of their optical properties. Despite years of effort, even the most uniform quantum dot samples possess some heterogeneity in size, shape, and composition, which has prevented complete structure determination and hindered understanding of structure-property relationships. Chapter 1 of this thesis presents an approach to overcoming this challenge and reports the synthesis of a set of four, new, atomically precise cadmium selenide nanocrystal samples, which we call CdSe(350 nm), CdSe(380 nm), CdSe(408 nm), and CdSe(435 nm) after their lowest energy absorption features. We determine their structures and formulas through a combination of single crystal and powder X-ray diffraction measurements, elemental analysis, and spectroscopy. We also describe the optical properties of these samples and their sensitivity to ligand coverage, compare them to other previously reported cadmium selenide nanomaterials, and discuss ongoing experiments.
Because CdSe(350 nm), CdSe(380 nm), CdSe(408 nm), and CdSe(435 nm) are atomically precise, they allow us to correlate specific structural features with material properties, which is the focus Chapter 2. Here we present a series of Raman scattering experiments designed to probe the evolution of vibrational structure with size. We find that the Cd-Se stretching region of the Raman spectra exhibits two peaks, which are assigned to primarily surface-derived and interior-derived atomic motions using density functional theory calculations. By performing variable temperature measurements, we discover that the smallest sample, CdSe(350 nm), exhibits behavior that can be well-described using a model developed for small molecules while the vibrations of the largest measured cluster, CdSe(408 nm), are better described by a model developed for bulk materials. This observation is evidence that the transition to a more bulk-like vibrational structure occurs relatively rapidly when cadmium selenide materials are approximately 2 nm in size.
The emergence of collective material properties is also the subject of Chapter 3, but the topic is approached from a different perspective. Instead of focusing on a series of atomically precise clusters that differ in size, Chapter 3 presents a series of molecules composed of atomically precise clusters. We prepare octahedral hexaruthenium carbonyl clusters, [Ru₆C(CO)₁₆]²⁻, and use them as building blocks to assemble oligomers linked by single metal atom bridges. We synthesize and structurally characterize a set of compounds varying in length (from monomer to trimer) and linker atom identity (cadmium and mercury) and study the effect on electronic structure using infrared and UV-Visible absorption spectroscopies and density functional theory calculations. With increasing oligomer length, the UV-Vis absorption profile changes and shifts to lower energy, which we attribute in part to the development of coupling between neighboring clusters. Our calculations show that the infinite polymer composed of [Ru₆C(CO)₁₆]²⁻ linked by Hg²⁺ would be a one-dimensional semiconductor with a 1.5 eV direct band-gap.
More detailed abstracts can be found at the beginning of each chapter.
|
36 |
The role of the GRB2 family of adaptor proteins in T cell receptor-mediated signalingBilal, Mahmood 01 January 2015 (has links)
CD4+ T cells are critical in the fight against parasitic, bacterial, and viral infections, but are also involved in many autoimmune and pathological disorders. Ligation of the T Cell Receptor (TCR) is the primary signal required for T cell activation proliferation, differentiation and cytokine release. Upon TCR activation, several kinases and adaptor proteins are assembled at the TCR/linker for activation of T cells (LAT) signaling complexes, a process indispensable for optimal signal transduction. One important group of proteins recruited to the TCR/LAT complexes is the GRB2 family of adaptors.
Due to their role in mediating signaling complexes, the GRB2 family of adaptors are critical for development, proliferation, and survival of diverse cell types. These proteins have been linked to the initiation and progression of numerous pathological conditions including diabetes, asthma/allergy, and solid and hematopoietic malignancies. Therefore, it is essential to characterize and understand the complete functions of these proteins for the generation of safe and efficient targeting treatments for diseases mediated by these proteins. In T cells, GRB2 and its homologs, GADS and GRAP, are crucial for the propagation of signaling pathways through the TCR and adaptor protein LAT. These proteins recruit distinct sets of proline-rich ligands to LAT thereby inducing multiple signaling pathways such as MAP kinase activation, calcium influx and cellular adhesion. However, the role of GRB2 family members in controlling TCR and LAT mediated signaling in mature human T cells is not completely understood. Moreover, the relative role of GRB2 family members in the extent and timing of the recruitment of SH3 domain ligands to the LAT complex is unknown. Our hypothesis is that these proteins recruit distinct sets of ligands to the LAT complex that can drive differential downstream signaling events.
As presented in CHAPTER III, we developed microRNA and shRNA targeting viral vectors to effectively inhibit the expression of GRB2 and GADS in human CD4+ T cells to examine the role of these adaptors in mature human T cells. We also established optimized protocols for high efficacy retro or lentiviral transduction of human T cell lines, activated and "hard-to-transduce" non-activated primary human CD4+ T cells. In CHAPTER IV, we demonstrate the requirement for GRB2 in TCR-induced IL-2 and IFN-γ release. The defects in cytokine release in the absence of GRB2 were attributed to diminished formation of LAT signaling microclusters, which resulted in reduced MAP kinase activation, calcium flux and PLC-γ1 recruitment to LAT signaling clusters. Overall, the data presented in this chapter demonstrate that the ability of GRB2 to facilitate protein clustering is as important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes. In CHAPTER V, we describe the role for GADS in mediating TCR-induced IL-2 and IFN-γ production. GADS was critical for the recruitment of SLP-76 and PLC-γ1 to the LAT complex and subsequent calcium influx. We also show, in contrast to the current paradigm, that recruitment of GADS/SLP-76 complexes to LAT is not required for TCR-mediated adhesion and cytoskeletal arrangement.
Overall, our studies reveal novel mechanisms for the role of GRB2 family members in TCR-mediated signaling. They also provide insight into the mechanisms that regulate growth factor, cytokine and insulin receptors. Importantly, studies presented in this thesis will help us understand the mechanisms of T cell activation and highlight potential new therapies for T cell-mediated diseases, including leukemia, lymphomas, autoimmune disorders and cardiovascular disease.
|
37 |
Nanoclusters of doped ZnO and core-shell iron /Antony, Jiji. January 1900 (has links)
Thesis (Ph. D., Physics)--University of Idaho, August 2006. / Major professor: You Qiang. Includes bibliographical references (leaves 119-137). Also available online (PDF file) by subscription or by purchasing the individual file.
|
38 |
Development of a new water-water interaction potential and application to molecular processes in ice /Batista, Enrique R. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 115-123).
|
39 |
Theoretical investigations in vibrational spectroscopy /Beck, Douglas R., January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [129]-134).
|
40 |
Nanoparticules et colloïdes multifonctionnels à base de clusters d’éléments de transition et complexes de lanthanides / Multifunctional nanoparticles and colloids based on clusters of transition elements and lanthanide complexesNeaime, Chrystelle 08 October 2015 (has links)
La première partie de ce travail porte sur l’élaboration et la caractérisation de nouvelles nanoparticules (NPs) multifonctionnelles de silice à architectures complexes. L’enjeu est de répondre à la demande croissante d’élaboration de nouveaux systèmes colloïdaux non toxiques, magnétiques et/ou luminescents dans la région NIR pour des applications potentielles en biotechnologie. Cet objectif a été atteint en associant intimement des composés à clusters de molybdène avec des nanocristaux de maghémite et/ou d’or dans une NPs de silice de 50 nm. Une évaluation de la cytotoxicité des NPs contenant des clusters d’éléments de transition Cs2Mo6Br14 ainsi qu’un suivi par microscopie de fluorescence en temps retardé des NPs Cs2Mo6I8(C2F5COO)6@SiO2 incorporées dans des cellules cancéreuses sont présentés. Dans la deuxième partie, des poudres microcristallines de composés hétéronucléaires de polymères de coordination à base de terres rares de formule chimique générale [Ln2-2xLn’2x(bdc)3,4H2O]∞ avec 0 ≤ x ≤ 1 ont été nanométrisées dans du glycérol. Ces NPs présentent des propriétés luminescentes identiques à celles du matériau massif. Une étude détaillée de cette nouvelle voie de synthèse répondant aux principes de la chimie verte ainsi qu’une étude de la stabilité en fonction du temps et de la dilution des colloïdes obtenus ont été réalisées. / The first part of this work involves the development and characterization ofnovel nanoparticles (NPs) of multifunctional silica with complex architectures.The challenge is to meet the increasing demand for development of newnon-toxic colloidal systems, magnetic and/or luminescent in the NIR regionfor potential applications in biotechnology. This objective was achievedby closely associating molybdenum clusters compounds with maghemitenanocrystals and/or gold in 50 nm silica NPs. An evaluation of thecytotoxicity of NPs containing clusters of transition elements of Cs2Mo6Br14and a time-gated fluorescence microscopy of Cs2Mo6I8(C2F5COO)6@SiO2NPs incorporated in cancer cells are presented.In the second part, microcrystalline powders of heteronuclear lanthanidebasedcoordination polymers with general chemical formula [Ln2-2xLn’2x(bdc)3,4H2O] ∞ 0 ≤ x ≤ 1 were dissolved in glycerol . These NPsexhibit luminescent properties identical to that of the bulk material.A detailed study of this new green synthetic route and a study of thestability over time and a dilution of the obtained colloids were performed.
|
Page generated in 0.0768 seconds