• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 93
  • 35
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Synthèse de polymères de coordination poreux pour l'adsorption sélective du dioxyde de carbone / Synthesis of news metal-organic frameworks for selective carbon dioxide adsorption

Ortiz, Guillaume 22 September 2011 (has links)
La conception de matériaux capables de piéger sélectivement le CO2 revêt un enjeu majeur dans le développement de procédé de capture post-combustion pour de nombreux secteurs industriels. Nos travaux visent l'élaboration de nouveaux polymères de coordination de type MOF (“Metal-Organic Framework”) préparés par auto-assemblage de briques moléculaires polycarboxyliques avec des métaux de transition qui constituent les noeuds du réseau tridimensionnel. Ces matériaux hybrides microporeux présentent des propriétés d’adsorption du CO2 importantes. Notre approche a consisté à synthétiser des polymères de coordination dans le but d'accroître la capacité et la sélectivité d'adsorption du CO2 vis-à-vis d'autres gaz comme CO, CH4, N2 et O2 grâce à des interactions physiques impliquant le moment quadripolaire élevé du CO2 et le potentiel électrostatique existant dans les pores du matériau. Dans ce mémoire sont décrites les synthèses des différentes briques moléculaires organiques constituées de polyamines et de polyazamacrocycles Nfonctionnalisées par des terminaisons benzocarboxylate. Des matériaux homo- et hétéro- bimétalliques présentant des structures cristallines originales ont été obtenus à partir de briques moléculaires triazamacrocycliques N-fonctionnalisées par des terminaisons acides carboxyliques et différents cations métalliques (Zn2+, Co2+, Cd2+ et Ni2+). Les études de ces polymères de coordination poreux ont révélé leur capacité d’adsorption importante du CO2 avec une sélectivité remarquable dans les conditions normales de température et de pression. / The design of material able for CO2 capture is a major issue to achieve post-combustion capture process for many industries. Our work aims to develop new coordination polymer MOF (“Metal-Organic Framework”) prepared by self-assembling polycarboxylic linkers and transition metals. These microporous hybrids materials show important CO2 adsorption properties and are promising in the field of gas separation. The main topic of our work is to synthesise MOFs with high adsorption capacity and selectivity for CO2 over other gases (CO, CH4, N2 and O2). The gas-solid interactions are due to physical phenomena involving the high quadrupolar moment of CO2 and the electrostatic potential lying in the pore of the material. In this manuscript, the synthesis of various organic linkers incorporating N-functionalised polyamines and polyazamacrocycles with benzocarboxylate functions is described. Homo- and hetero- bimetallic materials with original tridimensional structure were obtained from a N-functionalised triazamacrocyclic linker and different metal cations (Zn2+, Co2+, Cd2+ and Ni2+). Studies of porous coordination polymers have shown high CO2 adsorption capacity with a remarkable selectivity in the ambient temperature and pressure conditions.
72

Diffusion Maximum Or Levitation Effect In Porous Solids, Dense Fluids And Polar Liquids And Development Of Hydrocarbon-Zeolite Potential And Related Aspects

Ghorai, Pradip Kumar 08 1900 (has links) (PDF)
No description available.
73

Teoretické studium aplikačního potenciálu nových dvourozměrných materiálů / Theoretical investigation of novel two-dimensional materials with application potential

Lyu, Pengbo January 2019 (has links)
Electron confinement due to the two-dimensional (2D) nature of layered materials accounts for their fascinating electronic properties and for their applications in new-generation electronic devices. Moreover, the large specific surface area of 2D materials also enables their use in surface-related applications, such as catalysis and adsorption. In addition, these 2D materials are promising photocatalysts thanks to the shorter migration distance of photogenerated electrons and of electron holes. The research reported in this thesis aimed to provide atomistic insight into 2D layered materials, particularly into their structures, electronic properties and potential applications in the field of catalysis, photocatalysis and alkali metal ion batteries. Our findings are not only theoretically relevant but also open new research avenues for our experimental collaborators to improve specific properties and activities of their materials. The main results from this thesis, for five different classes of 2D materials, are summarized below. 2D covalent organic frameworks (COFs). CTF-type COFs with similar topology but different nitrogen-to-carbon ratios were investigated for their potential in photocatalytic water splitting. More specifically, torsion and bending effects on structure stability were investigated in...
74

Two-Dimensional Core-Shelled Porous Hybrids as Highly Efficient Catalysts for Oxygen Reduction Reaction

Yuan, Kai, Zhuang, Xiaodong, Fu, Haiyan, Brunklaus, Gunther, Forster, Michael, Chen, Yiwang, Feng, Xinliang, Scherf, Ullrich 07 May 2018 (has links)
No description available.
75

Investigation of Spray Cooling Schemes for Dynamic Thermal Management

Yata, Vishnu Vardhan Reddy 05 1900 (has links)
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 μm thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and ~10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2 - 5 ml/cm².s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
76

Synthesis and Characterization of Hybrid Materials Based on Conjugated Microporous Polymers

Reis, Berthold 31 July 2023 (has links)
Das Ziel der Arbeit war die Kombination von 1,3,5-Triethynylbenzen (TEB)-basierten konjugierten mikroporösen Polymeren (CMPs) mit den unterschiedlichen Materialien Silica, Chitosan und Silizium um Hybridmaterialien herzustellen. Als Grundprämisse galt dabei die anwendungsorientierte Verbesserung der Eigenschaften, wobei sich an den literaturbekannten Hauptanwendungen von CMPs – als Adsorber oder als Photokatalysator – orientiert wurde. Die Optimierung von Hybridmaterialien erfordert drei Grundvoraussetzungen: Genaue Kenntnisse der CMPs, dasselbe Verständnis von den Eigenschaften der zu kombinierenden Materialien und die Möglichkeit der umfassenden Charakterisierung. Nur unter diesen Voraussetzungen lassen sich die kollektiven und die aus der Kombination entstehenden Eigenschaften des Hybridmaterials definiert einstellen. Die erste Studie ist der Grundvoraussetzung, der Struktur-Eigenschaftsbeziehung in CMPs, gewidmet. Dabei wurden neuartige CMPs auf Basis von TEB gekuppelt mit Dibromophenanthren-diol Monomeren hergestellt (Polymer TEB-Phenanthren =PTPh). Diese Monomere wurden über die Diolgruppe mit Methyl-(OMe), Trimethylsilyl- (TMS) oder Tertbutyldimethylsilyl (TBDMS) funktionalisiert, wodurch eine homologe Reihe mit steigendem sterischen Anspruch und variierender Polarität entstand. Diese Monomere wurden jeweils mit TEB zu CMPs umgesetzt, um den Einfluss der Sterik auf die CMP Eigenschaften zu analysieren. Über dynamische Kontaktwinkelmessung wurde ermittelt, dass mit Ausnahme von PTPh-TMS, alle PTPh-CMPs mit Kontaktwinkeln zwischen 136° und 148° stark hydrophob sind. Für PTPh-TBDMS ergab sich eine weitere ungewöhnliche Eigenschaft: entgegen den klassischen CMP-Eigenschaften, war es in hydrophoben Lösungsmitteln löslich. Aus Kernspinresonanzspektroskopie (NMR), dynamischen Lichtstreuungs- (DLS) und Transmissionselektronenmikroskop- (TEM) Messungen ging hervor, dass es in Form gequollener, stärker vernetzter Nanopartikel vorliegt, die von weniger vernetztem, quasi-linearem Polymer kolloidal stabilisiert werden. Für potentielle Anwendungen in der Sensortechnik ist dabei relevant, dass dieses PTPh-TBDMS bei einer Anregung mit Licht von 400 nm fluoreszierende Eigenschaften aufweist. Die zweite Studie befasst sich mit dem ersten Hybridmaterial aus mesoporösen Silica-Mikrosphären (40 – 70 µm Durchmesser) ummantelt mit CMPs zur Adsorption organischer Schadstoffe. Während die CMPs in ihren Funktionalitäten genau auf die zu adsorbierende Substanz eingestellt werden können, verbessern die SiO2 Partikel die Dispergierbarkeit und die technische Handhabung der ansonsten schwierig abzutrennenden CMPs. In der ersten Teilstudie wurde das literaturbekannte CMP aus Dibromopyrimidin und TEB (CMP = Polymer TEB Pyrimidin = PTP) für die Ummantelung verwendet. Die in der Synthese eingesetzte Menge an SiO2 beeinflusst die Adsorption des Diclofenacs (DCF), eines weitverbreiteten Pharmazeutikums, welches als Modelladsorptiv verwendet wurde. Die ermittelten maximalen Beladungskapazitäten zeigen ein Maximum bei 3.0 g Silica auf die Standardmenge CMP. Das Silica selbst adsorbiert DCF in vernachlässigbaren Mengen, weshalb die CMP-spezifische Kapazität aus dem tatsächlich im Material enthaltenen CMP-Massenanteil (Thermogravimetrische Analyse (TGA) -Bestimmung) berechnet wurde. Hier ergibt sich für das Maximum bei 3.0 g Silica eine maximale Beladung von 422 mg DCF pro Gramm CMP, welche mit den besten bekannten Adsorbern konkurrieren kann. In der zweiten Teilstudie wurde das Prinzip der Silicasphären-Ummantelung auf andere CMPs aus jeweils TEB und Dibromonaphtalen, Dibromoanilin und Dibromopyridin übertragen. Es konnte gezeigt werden, dass die Monomerpolarität starken Einfluss auf den Erfolg der Ummantelung hat: Nur bei gleicher Polarität von Monomer und Silicaoberfläche war eine Beschichtung möglich. Mittels Präfunktionalisierung des Silicas war eine Ummantelung auch für die hydrophoberen Monomere möglich. Diese Beschichtungen wurden mit Fourier-Transformations-Infrarotspektroskopie (FTIR), Festkörper-NMR, REM, REM-EDX, TGA und TEM analysiert. Im Anschluss wurde erneut die DCF-Adsorption untersucht, wobei das Dibromoanilin basierte CMP@SiO2 die höchste CMP-spezifische DCF-Adsorptionskapazität mit 228 mg/g lieferte. Ein anderes Hybridmaterial, bestehend aus den in der ersten Studie entwickelten CMPs eingebettet in das biobasierte Polymer Chitosan, wird in der dritten Studie thematisiert. Das Ziel war, analog zu den vorhergehenden Studien, eine bessere Verteilung und Zugänglichkeit der CMPs für Adsorptive bei gleichzeitiger Retention in definierten Strukturen zur Vereinfachung der Handhabung. Chitosan als biobasiertes und biokompatibles Polymer ist vergleichsweise nachhaltig, ermöglicht medizinische Applikationen und ist gut über die Aminogruppe funktionalisierbar. Daher wurde die Aminofunktionalität mit Hexanoylchlorid umgesetzt, um eine hydrophobe Hexanoylgruppe in das Chitosan einzuführen. Das modifizierte Hexanoyl Chitosan (H-chitosan) wurde auf verschiedene Weise analysiert, wobei besonders die Änderung der rheologischen Eigenschaften aufgrund der Unterbrechung der Wasserstoffbrückenbindung zwischen den Chitosanketten durch die hydrophobe Modifizierung bedeutend waren. Anschließend wurden sowohl das reine Chitosan als auch das H-chitosan verwendet, um CMP@Chitosan Gel-Beads herzustellen. Da das CMP das teurere Material ist, wurde es im Massenverhältnis von 1:4 eingesetzt, wobei über REM und REM-EDX nachgewiesen wurde, dass die CMPs großflächig in den Chitosanmatrizen verteilt sind. Beim Trocknen wurde beobachtet, dass die luftgetrockneten Beads zu kompakten Strukturen kollabieren, während die vakuumgetrockneten Beads die gequollene Form beibehalten. Dies wirkt sich auf die Quellung der trockenen Beads im wässrigen Adsorptionsmedium aus, wobei die luftgetrockneten Beads nur geringfügig und die vakuumgetrockneten Beads deutlich stärker quellen. Dabei quellen die H-chitosan Beads generell besser, was auf die gehinderte Zusammenlagerung der Chitosanketten durch die hydrophobe Gruppe zurückgeführt wurde. Mittels Batchversuchen wurde die Adsorption von DCF bei einer niedrigen Konzentration von 1 mg/L und einer hohen Konzentration von 300 mg/L untersucht, wobei sich die vakuumgetrockneten Beads als effektiver erwiesen. Die Hybridmaterialbeads adsorbierten mehr DCF als sowohl die reinen Chitosan- bzw. H-chitosan Beads als auch die reinen CMPs. Die CMP@H-chitosan Beads adsorbierten aufgrund der verbesserten Quellung die höchsten Mengen an DCF. Die CMP-spezifische Adsorption wurde durch die Einbindung und Verteilung in den Chitosanmatrizen deutlich gesteigert, während gleichzeitig die Handhabbarkeit erleichtert wurde, da die Beads mittels eines Siebes aus der Adsorptionslösung abgetrennt werden können. Die letzte Studie ist auf Silizium-Nanopartikel (SiNPs)@CMP-Hybridmaterialien zur Anwendung als Photokatalysator in der solaren Wasserstoffgenerierung (HER) ausgerichtet. In diesem Prozess wird solare Energie direkt genutzt, um aus Wasser Wasserstoff herzustellen. Die für CMP-typischen geringen HER-Raten sollen durch die, von der AG Dasog (Dalhousie Universität, Halifax, Kanada) hergestellten, SiNPs angehoben werden. Mittels FTIR Spektroskopie wurde bestätigt, dass diese CMPs auch im Beisein der SiNPs gebildet wurden. Über TGA wurde der Massenanteil der SiNPs in den jeweiligen Hybridmaterialien bestimmt, welcher von 4 wt% bis 22 wt% variiert und vor allem vom eingesetzten Monomer abhängt. REM-EDX Analysen zeigten eine lösungsmittelunabhängige, flächendeckende Verteilung der SiNPs in den jeweiligen CMPs. Die Einbindung der SiNPs, analysiert über DLS und TEM Messungen, ergab in einem Fall eine vollständige Einbindung, in einem anderen Fall eine schlechte Einbindung und in allen übrigen Fällen partielle Einbindung. Diese partielle Einbindung, bei der Teile der SiNPs nicht mit CMP bedeckt sind, erwies sich als vorteilhaft in den Wasserstoffgenerierungsversuchen. Bei diesen SiNP@CMP Hybridmaterialien waren die HER Raten gegenüber den reinen CMPs deutlich gesteigert, wobei das beste Material 32 µmol/g*h Wasserstoff produzierte. Dieses Material wurde durch Dotierung mit H2PtCl4 weiter optimiert und in Zyklisierungsstudien eingesetzt. Während die Langzeitstabilität sich als optimierungsbedürftig erwies, war die Dotierung erfolgreich und steigerte die HER Rate auf 42 µmol/g*h. Im Rahmen dieser Arbeit wurden CMPs mit je einem Vertreter der anorganischen Isolatoren, der biobasierten Polymere und der anorganischen Halbleiter kombiniert. Die grundlegende Unterschiedlichkeit dieser Materialien zeigt, dass der Kombinationsvielfalt nur wenige Limitationen gesetzt sind. Die anwendungsbezogenen Machbarkeitsstudien zeigen die daraus erwachsenden Vorteile auf. Dabei befindet sich die Erforschung der CMP-Hybridmaterialien noch in ihren Anfängen, enthält jedoch bereits vielversprechende Strategien und Ansätze zur Lösung gesellschaftlich relevanter Problemstellungen.:Abstract V Kurzfassung VIII Abbreviations XI Symbols XII List of publications XIII List of figures XVI List of schemes XVIII List of tables XIX 1. Introduction 1 2. Theoretical background 4 2.1. Synthesis and properties of conjugated microporous polymers (CMPs) 4 2.1.1. Conjugated microporous polymers - a new class of materials 4 2.1.2. Synthesis of CMPs 5 2.1.3. Properties of CMPs 8 2.2. Fundamentals of adsorption and application of CMPs as adsorbers 11 2.2.1. Basic adsorption models 12 2.2.2. CMPs as adsorbers 16 2.3. Fundamentals and application of CMPs for hydrogen evolution 19 2.3.1. Physicochemical fundamentals of photocatalysis 19 2.3.2. Reaction and conditions of solar-driven hydrogen evolution 22 2.3.3. CMPs for solar-driven hydrogen evolution 24 2.4. Hybrid materials based on CMPs 26 2.4.1. CMPs combined with nanoparticulate systems 26 2.4.2. Macroscale CMP-based hybrid materials 30 2.5. Fundamentals of instrumental analysis 31 2.5.1. Fourier transform infrared spectroscopy 31 2.5.2. Nuclear magnetic resonance 34 2.5.3. Gas sorption analysis 37 3. Results and discussion 41 3.1. Synthesis and characterization of conjugated microporous polymers 41 3.1.1. Dibromophenanthrene-based monomers 42 3.1.2. CMPs of the basic monomers 43 3.1.3. CMPs of the functionalized monomers 46 3.1.4. Properties of the PTPh-CMPs 48 3.1.5. PTPh-TBDMS - a special case 50 3.2. CMP@Silica microspheres 52 3.2.1. Conjugated Microporous Polymer Hybrid Microparticles for Enhanced Applicability in Silica-boosted Diclofenac Adsorption 53 3.2.2. Polarity and Functionality Tailored Conjugated Microporous Polymer Coatings on Silica Microspheres for Enhanced Pollutant Adsorption 71 3.3. CMP@Chitosan 86 3.3.1. A Complementary and Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride 88 3.3.2. CMP@Chitosan synthesis and characterization 106 3.3.3. Diclofenac adsorption of CMP@Chitosan beads 110 3.4. Silicon nanoparticles@CMPs 115 3.4.1. New materials for solar-driven hydrogen evolution 115 3.4.2. Synthesis and characterization of selected SiNP@CMP hybrid materials 116 3.4.3. Distribution and incorporation of SiNPs in the CMP matrices 121 3.4.4. Hydrogen evolution reaction 124 4. Experimental section 128 4.1. Synthesis 128 4.1.1. Synthesis of the CMPs 129 4.1.2. Synthesis of dibromo-phenanthrene based monomers 129 4.1.3. Synthesis of CMP@Chitosan beads 131 4.1.4. Synthesis of the SiNP@CMP hybrid materials 132 4.2. Characterization and application-related studies 133 4.2.1. Characterization of the PTPh-monomers and CMPs 133 4.2.2. Characterization of the CMP@Chitosan beads 133 4.2.3. Characterization of the SiNP@CMP 134 5. Conclusion and outlook 135 6. References 141 7. Appendix 151 Danksagung / The thesis aimed to combine 1,3,5-triethynylbenzene (TEB)-based conjugated microporous polymers (CMPs) with the different materials silica, chitosan, and silicon to produce hybrid materials. The basic premise was an application-oriented improvement of properties, guided by the main applications of CMPs known from the literature - as adsorbers or as photocatalysts. Optimization of hybrid materials requires three basic prerequisites: Precise knowledge of the CMPs, the same understanding of the properties of the materials to be combined, and the possibility of comprehensive characterization. Only under these conditions the collective properties and those resulting from the combination of the hybrid material can be adjusted in a defined way. The first study is devoted to the basic premise, the structure-property relationship in CMPs. Here, novel CMPs based on TEB coupled with dibromo phenanthrene-diol monomers were prepared (polymer TEB-phenanthrene =PTPh). These monomers were functionalized with methyl-(OMe), trimethylsilyl- (TMS), or tertbutyldimethylsilyl (TBDMS) via the diol group, resulting in a homologous series with increasing steric demand and varying polarity. These monomers were each coupled with TEB to form CMPs in order to analyze the influence of steric demand on the CMP properties. Via dynamic contact angle measurement, it was determined that except PTPh-TMS, all PTPh-CMPs are highly hydrophobic with contact angles between 136° and 148°. For PTPh-TBDMS, another unusual property emerged: Contrary to the classical CMP properties, it was soluble in hydrophobic solvents. From nuclear magnetic resonance (NMR), dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements, it was found to consist of swollen, more cross-linked nanoparticles colloidally stabilized by less cross-linked quasi-linear polymer. Further, PTPh-TBDMS exhibits fluorescent properties when excited with light at 400 nm, which is of relevance to potential applications in sensor technology. The second study deals with the first hybrid material consisting of mesoporous silica microspheres (40 – 70 µm diameter) coated with CMPs for the adsorption of organic pollutants. While the functionalities of the CMPs can be precisely adjusted to interact with the pollutant, the SiO2 particles improve dispersibility and technical handling of the CMP that is otherwise difficult to recover. The first sub-study used the literature-known CMP of dibromo pyrimidine and TEB (CMP = polymer TEB pyrimidine = PTP) for the coating. From scanning electron microscopy (SEM) images, it can be seen that the PTP grows on the SiO2 spheres in the form of hemispheres. The amount of SiO2 used in the synthesis affects the adsorption of diclofenac (DCF), a widely applied pharmaceutical used as a model adsorptive. The maximum loading capacities determined show a maximum at 3.0 g of silica to the standard amount of CMP. The silica itself adsorbs DCF in negligible amounts, which is why the CMP-specific capacity was calculated from the CMP mass fraction actually contained in the material (thermogravimetric analysis -TGA determination). Here, the maximum loading at 3.0 g silica is 422 mg DCF per gram CMP, which is competitive with the best-known adsorbents. In the second sub-study, the principle of silica sphere coating was transferred to other CMPs from TEB and dibromo naphthalene, dibromo aniline, and dibromo pyridine, respectively. It was shown that the monomer polarity has a strong influence on the success of the coating: The coating was only possible if the monomer and the silica surface featured the same polarity. Through pre-functionalization of the silica, the coating was also made possible for the more hydrophobic monomers. Fourier transform infrared spectroscopy (FTIR), solid-state NMR, SEM, SEM-EDX, TGA, and TEM were used to analyze these coatings. DCF adsorption was then investigated, with the dibromo aniline-based CMP@SiO2 providing the highest CMP-specific DCF adsorption capacity of 228 mg/g. Another hybrid material, consisting of the CMPs developed in the first study embedded in the biobased polymer chitosan, is investigated in the third chapter. The goal, analogous to the previous studies, was to improve the distribution and accessibility of the CMPs for adsorptives while retaining them in defined structures for ease of handling. As a biobased and biocompatible polymer, chitosan is comparatively sustainable, enables medical applications, and is well-functionalizable via the amino group. Therefore, the amino functionality was converted with hexanoyl chloride to introduce a hydrophobic hexanoyl group into the chitosan. The modified hexanoyl chitosan (H-chitosan) was analyzed in several ways. The change in rheological properties due to the disruption of hydrogen bonding between the chitosan chains by the hydrophobic modification was particularly significant. Subsequently, the pure chitosan and the H-chitosan were used to prepare CMP@Chitosan gel beads. Since the CMP is the more expensive material, it was used in a mass ratio of 1:4. It was verified via SEM and SEM-EDX that the CMPs were distributed over a large area in the chitosan matrices. Upon drying, it was observed that the air-dried beads collapsed into compact structures, while the vacuum-dried beads retained the swollen shape. This affects the swelling of the dry beads in the aqueous adsorption medium, with the air-dried beads swelling only slightly and the vacuum-dried beads swelling significantly stronger. In general, the H-chitosan beads swell better, which was attributed to the hydrophobic group's hindered assembly of the chitosan chains. Batch experiments were used to investigate the adsorption of DCF at a low concentration of 1 mg/L and a high concentration of 300 mg/L, in which the vacuum-dried beads were found to be more effective. The hybrid material beads adsorbed more DCF than pure chitosan or H-chitosan beads and the pure CMPs. The CMP@H-chitosan beads adsorbed the highest amounts of DCF due to improved swelling. Overall, the CMP-specific adsorption was significantly enhanced by incorporation and distribution in the chitosan matrices. At the same time, handling was facilitated because the beads can be separated from the adsorption solution using a sieve and do not need to be centrifuged like the CMPs. The final study is focused on silicon nanoparticles (SiNPs)@CMP hybrid materials for use as photocatalysts in solar-driven hydrogen evolution reaction (HER). In this process, solar energy is directly used to produce hydrogen from water. The low HER rates typical for CMPs are to be raised by the SiNPs produced by the Dasog group (Dalhousie University, Halifax, Canada). In turn, the SiNPs are to be protected from oxidative influences by the CMPs. For this purpose, the CMPs known from the literature and investigated in the previous studies were used. By FTIR, it was confirmed that all CMPs were also formed in the presence of the SiNPs. Via TGA, the mass fraction of SiNPs in the respective hybrid materials was determined, which varied from 4 wt% to 22 wt% and depended mainly on the monomer used. SEM-EDX analyses showed a solvent-independent, areal distribution of SiNPs in the respective CMPs. The incorporation of the SiNPs analyzed via DLS and TEM measurements showed complete incorporation in one case, poor incorporation in another, and partial incorporation in all other cases. This partial incorporation, where parts of the SiNPs are not covered with CMP, proved beneficial in the hydrogen evolution experiments. For these SiNP@CMP hybrid materials, the HER rates were significantly increased compared to the pure CMPs, with the best material producing 32 µmol/g*h of hydrogen. This material was further optimized by doping with H2PtCl4 and used in cyclization studies. While long-term stability proved to require more optimization, doping was successful as it increased the HER rate to 42 µmol/g*h. In this work, CMPs were combined with one representative of inorganic insulators, biobased polymers, and inorganic semiconductors. The fundamental difference between these materials shows that there are few limitations set to the variety of combinations. The application-related feasibility studies showed the advantages that arise from this. Although research into CMP hybrid materials is still in its infancy, it already holds promising strategies and approaches for solving socially relevant problems.:Abstract V Kurzfassung VIII Abbreviations XI Symbols XII List of publications XIII List of figures XVI List of schemes XVIII List of tables XIX 1. Introduction 1 2. Theoretical background 4 2.1. Synthesis and properties of conjugated microporous polymers (CMPs) 4 2.1.1. Conjugated microporous polymers - a new class of materials 4 2.1.2. Synthesis of CMPs 5 2.1.3. Properties of CMPs 8 2.2. Fundamentals of adsorption and application of CMPs as adsorbers 11 2.2.1. Basic adsorption models 12 2.2.2. CMPs as adsorbers 16 2.3. Fundamentals and application of CMPs for hydrogen evolution 19 2.3.1. Physicochemical fundamentals of photocatalysis 19 2.3.2. Reaction and conditions of solar-driven hydrogen evolution 22 2.3.3. CMPs for solar-driven hydrogen evolution 24 2.4. Hybrid materials based on CMPs 26 2.4.1. CMPs combined with nanoparticulate systems 26 2.4.2. Macroscale CMP-based hybrid materials 30 2.5. Fundamentals of instrumental analysis 31 2.5.1. Fourier transform infrared spectroscopy 31 2.5.2. Nuclear magnetic resonance 34 2.5.3. Gas sorption analysis 37 3. Results and discussion 41 3.1. Synthesis and characterization of conjugated microporous polymers 41 3.1.1. Dibromophenanthrene-based monomers 42 3.1.2. CMPs of the basic monomers 43 3.1.3. CMPs of the functionalized monomers 46 3.1.4. Properties of the PTPh-CMPs 48 3.1.5. PTPh-TBDMS - a special case 50 3.2. CMP@Silica microspheres 52 3.2.1. Conjugated Microporous Polymer Hybrid Microparticles for Enhanced Applicability in Silica-boosted Diclofenac Adsorption 53 3.2.2. Polarity and Functionality Tailored Conjugated Microporous Polymer Coatings on Silica Microspheres for Enhanced Pollutant Adsorption 71 3.3. CMP@Chitosan 86 3.3.1. A Complementary and Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride 88 3.3.2. CMP@Chitosan synthesis and characterization 106 3.3.3. Diclofenac adsorption of CMP@Chitosan beads 110 3.4. Silicon nanoparticles@CMPs 115 3.4.1. New materials for solar-driven hydrogen evolution 115 3.4.2. Synthesis and characterization of selected SiNP@CMP hybrid materials 116 3.4.3. Distribution and incorporation of SiNPs in the CMP matrices 121 3.4.4. Hydrogen evolution reaction 124 4. Experimental section 128 4.1. Synthesis 128 4.1.1. Synthesis of the CMPs 129 4.1.2. Synthesis of dibromo-phenanthrene based monomers 129 4.1.3. Synthesis of CMP@Chitosan beads 131 4.1.4. Synthesis of the SiNP@CMP hybrid materials 132 4.2. Characterization and application-related studies 133 4.2.1. Characterization of the PTPh-monomers and CMPs 133 4.2.2. Characterization of the CMP@Chitosan beads 133 4.2.3. Characterization of the SiNP@CMP 134 5. Conclusion and outlook 135 6. References 141 7. Appendix 151 Danksagung
77

N-Heterocyclic carbene containing element organic frameworks as heterogeneous organocatalysts

Rose, Marcus, Notzon, Andreas, Heitbaum, Maja, Nickerl, Georg, Paasch, Silvia, Brunner, Eike, Glorius, Frank, Kaskel, Stefan 31 March 2014 (has links) (PDF)
A bifunctional imidazolium linker was used for the production of highly crosslinked element organic frameworks by Suzuki-coupling with tetrafunctional boronic acids. The resulting porous materials are good heterogeneous organocatalysts in the N-heterocyclic carbene-catalyzed conjugated umpolung of α,β-unsaturated cinnamaldehyde. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
78

Investigations On Size Dependence Of Diffusivity In Condensed Media

Sharma, Manju 11 1900 (has links)
Diffusion plays an important role in a number of processes like heterogeneous catalysis, corrosion, separation and purification of chemicals of industrial importance, steel hardening, fuel cells, and solid electrolytes for batteries. It also plays a vital role in several biological processes like transport across biomembranes, nerve impulse, flow of blood and permeation of ingested drug. The elementary process of diffusion in solids is quite different from those in liquids. Similarly, the mode of diffusion in porous solid where different regimes such Knudsen regime exists bears little similarity to those in a dense close-packed crystalline solid. Chapter 1 provides a brief introduction to basics of diffusion in different phases of condensed matter. Among the various phases discussed are liquids, close-packed crystalline solids (e.g., body-centered cubic solids), amorphous solids (e.g. glasses) and microporous crystalline solids (e.g., zeolites). Diffusion in these widely differing phases often bears no resemblance to each other; the rate of diffusion in these phases varies over many orders of magnitude and the elementary step and mechanism in the diffusion process are very different. Brief introduction to theories for diffusion in these phases is provided. Various experimental techniques to measure diffusivities are discussed. Different microscopic models to explain the Quasi Elastic Neutron Scattering (QENS) spectra of these phases yield an insight into the elementary step of the diffusion process. Notwithstanding the fact that completely different models are invoked to explain diffusion in different phases, there are certain underlying generic behaviour across these widely differing phases as the recent work on size dependence of diffusion in these phases demonstrate. Diffusion of a molecule or species (in the context of diffusion within condensed phases) without loss of generality may be said to occur in a medium. A universal behaviour observed is that self diffusivity exhibits a maximum as a function of the size of the diffusant when the diffusant is confined to a medium, as a result of what is known as the Levitation Effect. Such a maximum in self diffusivity has been seen in widely differing medium: microporous solids, dense liquids, ions in polar solvents, etc. The aim of the thesis is to investigate and further explore such universal behaviour and demonstrate for the first time the existence of common trends across different condensed phases in spite of difference in the detail at the microscopic level. In Chapter 2, we report a molecular dynamics study of diffusion of diatomic species AB within zeolite Y. The bond length of A-B as well as the interaction of A and B with the host zeolite atoms are varied. The results demonstrate that for the symmetric case (when A=B or AA), there exists a preferred bond length (determined by the bottleneck or window diameter) when the diffusivity is maximum. This is in agreement with previous results on monatomic species which also exhibit a similar diffusivity maximum. More importantly, no such maximum is seen when the interaction asymmetric is introduced in AB. Slight asymmetry in the interaction gives rise to a weak maximum while large asymmetry in interaction obliterates the diffusivity maximum. These results suggest that the importance of interaction between the diffusant and the medium in Levitation Effect or size-dependent diffusivity maximum. Further, it also demonstrates for the first time the close association between an inversion centre (in a statistical sense and not in the crystallographic sense) and the Levitation Effect. In Chapter 3, a study of size dependence of solutes in a Lennard-Jones liquid is reported. Einstein and others derived the reciprocal dependence of the self-diffusivity D on the solute radius ru for large solutes based on kinetic theory. We examine here (a) the range of ru over which Stokes-Einstein (SE) dependence is valid and (b) the precise dependence for small solutes outside of the SE regime. We show through molecular dynamics simulations that there are two distinct regimes for smaller solutes: (i) the interaction or Levitation Effect (LE) regime for solutes of intermediate sizes and (ii) the D 1/ru2 for still smaller solutes. We show that as the solute-solvent size ratio decreases, the breakdown in the Stokes-Einstein relationship leading to the LE regime has its origin in dispersion interaction between the solute and the solvent. These results explain reports of enhanced solute diffusion in solvents existing in the literature seen for small solutes for which no explanation exists. Several properties have been computed to understand the nature of solute motion in different regimes. We investigate in Chapter 4, the dependence of self diffusivity on the size of the diffusant in a disordered medium with the objective of understanding the experimentally observed correlation between self diffusivity and activation energy seen in a wide variety of glasses. Typically, it is found in many ionic glasses that a higher conductivity is associated with lower activation energy and vice versa. Our understanding of transport in glasses as provided by existing theories does not offer an explanation of this correlation. We have carried out molecular dynamics simulation as a function of the size of the impurity atom or diffusant (both neutral and charged) in a model host amorphous matrix. We find that there is a maximum in self diffusivity as a function of the size of the impurity atom suggesting that there is an appropriate size for which the diffusivity is maximum. The activation energy is found to be the lowest for this size of the impurity. A similar maximum has previously been found in other condensed phases such as confined fluids and dense liquids and has its origin in the Levitation Effect. The implications of this result for understanding ionic conductivity in glasses are discussed. Our result suggests that there is a relation between microscopic structure of the amorphous solid, diffusivity or conductivity and activation energy. The nature of this relationship is discussed in terms of the Levitation parameter showing that diffusivity is maximum when the size of the neck or doorway radius is comparable with the size of the diffusant. Our computational results here are in excellent agreement with independent experimental results which show that structural features of the glass are important in determining the ionic conductivity. In Chapter 5, we report results of molecular dynamics investigations into neutral impurity diffusing within an amorphous solid as a function of the size of the diffusant and density of the host amorphous matrix. We find that self diffusivity exhibits an anomalous maximum as a function of the size of the impurity species. An analysis of properties of the impurity atom with maximum diffusivity shows that it is associated with lower mean square force, reduced backscattering of velocity autocorrelation function, near-exponential decay of the intermediate scattering function (as compared to stretched-exponential decay for other sizes of the impurity species) and lower activation energy. These results demonstrate the existence of well known size-dependent diffusivity maximum in disordered solids. Further, we show that the diffusivity maximum is observed at lower impurity diameters with increase in density. This is explained in terms of the levitation parameter and the void structure of the amorphous solid. We demonstrate that these results imply contrasting dependence of self diffusivity (D) on the density of the amorphous matrix, . D increases with  for small sizes of the impurity but shows an increase followed by a decrease for intermediate sizes of the impurity atom. For large sizes of the impurity atom, D decreases with increase in . These contrasting dependence arises naturally from the existence of Levitation Effect. In Chapter 6, we discuss size dependence of impurity diffusion in an ordered system. We report molecular dynamics simulation studies to understand the role of impurity size and impurity-host interaction on impurity diffusivity in a body centered cubic solid. The simulation studies have been performed for a set of impurity-host interaction parameter ih (i=impurity, h=host atom) for a range of impurity sizes in rigid and flexible bcc solids. A double maximum is seen corresponding to two different sizes of the impurity species. Anomalous maximum is seen for a larger size of the impurity species in the case of the rigid host as compared to flexible host. The second anomalous diffusivity disappears with decrease in ih in flexible bcc solid. For one of the ih where double diffusivity maxima are observed, various properties are analysed to understand the anomalous diffusion behaviour. The impurity with anomalous diffusion has lower activation energy as compared to other impurities. Among the two anomalous impurities, the impurity with higher diffusivity has lower activation energy. The anomalous regime impurities as associated with velocity autocorrelation function with little or no backscattering, minimum average mean square force due to host atoms, lower activation energy. The self intermediate scattering function shows faster decay and a single relaxation time for anomalous regime impurity and two relaxation times for other impurity sizes. The wavenumber dependence of diffusivity of impurities shows oscillatory behaviour except for the anomalous regime impurities which show monotonic dependence on wavenumber. Chapter 7 discusses the influence of temperature induced solid-liquid phase transition on the size-dependent diffusivity. We report results for two distinct cases: (a) when the phase change is associated with corresponding changes in density and (b) when the phase change occurs at constant density. The latter is carried out so as to obtain the influence of disorder on the size-dependent diffusion or Levitation Effect. Studies with variable density are useful to understand the effect of disorder as well as change in density on size-dependent diffusivity. Two diffusivity maxima in the solid face-centred cubic phase is seen when the impurity-medium interaction is sufficiently large. One of these diffusivity maximum disappears with decrease in h. The impurities near the diffusivity maximum show velocity autocorrelation function with little backscattering, minimum in the average mean square force, lower activation energy, faster decay of self intermediate scattering function with a single relaxation time and a monotonic decay in wavevector dependence of diffusivity. Chapter 8 reports molecular dynamics simulations of a model guest tetrahedral molecule AX4 with differing bond lengths lAX have been carried out in a sphere with different surface roughness. The rotational-diffusion coefficient Dr shows a maximum for a particular value of lAX. This corresponds to the distance at which the interaction of the guest with the atoms of the host is most favourable. Although, the intensity of the maximum decreases with increase in the roughness of the confining surface, it is seen that the maximum exists even for a reasonably high degree of roughness. The observed maximum arises from the minimum in the torque on the tetrahedral molecule from its interaction with the confining medium due to mutual cancellation of forces. Activation energy for rotation is seen to be also a minimum for the bond length for which Dr is a maximum. These results suggest that there is a maximum in the rotational-diffusion coefficient when the rotating molecule is confined to a sphere of comparable size similar to the maximum in translational diffusion coefficient seen in porous solids and known as the Levitation Effect. On increase in the roughness of the sphere surface, the value of lAX at which the maximum in Dr is seen decreases. This is similar to the shift seen in the size of the diffusant corresponding to maximum diffusivity in the case of translational diffusivity. In Chapter 9 possible extensions to the work reported in the previous chapters and the directions to take are discussed. Symmetry plays an important role in size dependent diffusivity maximum in microporous crystalline solids; it would be interesting to investigate if similar role of symmetry exists in case of liquids and other disordered solids. Previous work from this laboratory on ions in water has shown the importance of electrostatic interactions. In the light of this, it would be interesting to see the influence of long-range interactions in breakdown of Stokes-Einstein relationship in liquids. Effect of density of the medium on impurity diffusion can be studied over a wide range of densities in case of supercritical fluids such as ions in water (where electrostatic interactions are present) and these can provide greater insight into dependence of diffusion on density. The origin of two diffusivity maxima in case of body-centered and face-centred cubic solids needs a detailed investigation to understand its origin. Quantification of disorder and its effect on size dependence of diffusion would be of interest. A detailed comparison with experimental data of matrix isolated molecules to understand and verify the dependence of rotational diffusivity on the size of the molecule as well as the cavity radius would be instructive.
79

Characterisation of inorganic materials using solid-state NMR spectroscopy

Sneddon, Scott January 2016 (has links)
This thesis uses solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to study local structure and disorder in inorganic materials. Initial work concerns microporous aluminophosphate frameworks, where the importance of semi-empirical dispersion correction (SEDC) schemes in structural optimisation using DFT is evaluated. These schemes provide structures in better agreement with experimental diffraction measurements, but very similar NMR parameters are obtained for any structures where the atomic coordinates are optimised, owing to the similarity of the local geometry. The ³¹P anisotropic shielding parameters (Ω and κ) are then measured using amplified PASS experiments, but there appears to be no strong correlation of these with any single geometrical parameter. In subsequent work, a range of zeolitic imidazolate frameworks (ZIFs) are investigated. Assignment of ¹³C and ¹⁵N NMR spectra, and measurement of the anisotropic NMR parameters, enabled the number and type of linkers present to be determined. For ¹⁵N, differences in Ω may provide information on the framework topology. While ⁶⁷Zn measurements are experimentally challenging and periodic DFT calculations are currently unreliable, calculations on small model clusters provide good agreement with experiment and indicate that ⁶⁷Zn NMR spectra are sensitive to the local structure. Finally, a series of pyrochlore-based ceramics (Y₂Hf₂₋ₓSnₓO₇) is investigated. A phase transformation from pyrochlore to a disordered defect fluorite phase is predicted, but ⁸⁹Y and ¹¹⁹Sn NMR reveal that rather than a solid solution, a significant two-phase region is present, with a maximum of ~12% Hf incorporated into the pyrochlore phase. The use of ¹⁷O NMR to provide insight into the local structure and disorder in these materials is also investigated. Once the different T₁ relaxation and nutation behaviour is considered it is shown that quantitative ¹⁷O enrichment of Y₂Sn₂O₇ is possible, and that ¹⁷O does offer a promising future tool for study.
80

Conception de nouveaux matériaux hybrides types MOFs bio-inspirés à fonctionnalités avancées pour la catalyse / Design of new MOF-type bio-inspired hybrid materials with advanced functionalities for catalysis

Bonnefoy, Jonathan 27 October 2015 (has links)
Les MOFs sont des solides à la structure cristalline poreuse à base de clusters métalliques et de ligands organiques qui font l'objet de très nombreuses études, dans des champs d'applications très variés, qui vont de la catalyse au « drug delivery », en passant par le stockage de gaz et, plus récemment, en tant que senseurs biologiques. Les ligands organiques, qui les constituent, peuvent lorsqu'ils possèdent un point d'ancrage, comme des groupements amino, être fonctionnalisés grâce à des réactions chimiques. Les travaux présentés dans cette thèse reportent la fonctionnalisation de MOFs, via différentes stratégies, comme des greffages covalent et issues de la chimie de coordination, tel que le couplage peptidique ou encore la synthèse d'urée. Dans cette thèse, est notamment présentée une nouvelle méthode permettant de greffer très rapidement des peptides chiraux dans les nanopores des MOFs. Une large bibliothèque MOF-peptides a ainsi été obtenue et caractérisée. Ces nouveaux composés ont également été utilisés pour l'ancrage de complexes organométalliques dans les cavités des MOFs. Suivant un échange de ligands post-synthétique, il a aussi été possible d'intégrer un complexe organométallique photo-catalytique dans la structure d'un MOF, améliorant ainsi ses activités et sélectivités pour la photo-réduction de CO2. Enfin, les performances catalytiques de ces derniers matériaux MOFs se sont révélées supérieures aux versions homogènes des complexes, ce qui offre de nouvelles opportunités pour la catalyse fine / Metal Organic Frameworks, MOFs, are porous crystalline solid based on metal clusters and organic ligands, investigated for numerous applications such as catalysis, drug delivery, gas storage and, more recently, biosensors. The work presented in this thesis focuses on functionalizing MOFs through different strategies, such as covalent grafting or surface coordination chemistry, through chemical reactions, such as peptide coupling or synthesis of urea. In particular, a new method to very quickly graft chiral peptides into the nanopores of MOFs is reported. A large library of MOF-peptides has thus been obtained and characterized. These novel compounds have also been used for grafting organometallics in the cavities of MOFs. Following a post-synthetic ligand exchange, it was also possible to integrate a photocatalytic complex in the structure of a MOF, improving its activities and selectivities for the photocatalytic CO2 reduction. In general, the catalytic performances of these materials were superior to those of their homogeneous counterparts, thus further expanding the potential of MOFs as well-defined heterogeneous catalysts for fine chemistry

Page generated in 0.0859 seconds