• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal organic frameworks as Lewis acid catalysts

Mitchell, Laura January 2014 (has links)
Lewis acids are widely used in the pharmaceutical industry, generally homogeneously, to perform reactions such as C-C or C=N bond formation and acetalisation. Typically, metal salts such as those of Ti, Fe and especially Sc are used, the last typically as the triflate. Metal organic frameworks (MOFs) containing such metals should act as heterogeneous, removable and reusable catalysts for similar reactions if they can be prepared in stable forms and with large, open pores and metal cation sites that can be rendered coordinatively unsaturated. Families of novel MOFs with different structure types and cations have therefore been prepared and their activity has been examined in carbonyl ene C-C bond forming reactions, Friedel-Crafts-Michael additions and in imine formation reactions. Their activities have been compared with those of the well-known HKUST-1(Cu), MIL-100(Fe) and MIL-101(Cr) solids examined as catalysts previously. In particular, divalent transition metal bisphosphonates and dicarboxylates with pore sizes from 10 – 20 Å and scandium carboxylates (MIL-68(Sc), MIL-88D(Sc), MIL-100(Sc), MIL-101(Sc)) have been tested. Synthetic procedures were optimised according to commercial constraints for the known MOFs STA-12(Ni) and MIL-100(Sc). While good activities are observed for Ni-based MOFs and in a number of the scandium-based solids, MIL-100(Sc) is by far the best Lewis acid catalyst for a range of reactions. In particular, MIL-100(Sc) is very active even when used without pre-dehydration, is readily recyclable with minor loss of activity and shows fully heterogeneous activity. It outperforms both MIL-100(Fe) and MIL-101(Cr), each commonly reported as versatile catalysts in the literature. Careful synthesis of bulky substrates shows that the activity is derived from reactions within the internal pore system. Furthermore, MIL-100(Sc) is able to perform tandem reactions - such as dehydration followed by carbonyl ene reaction - in which the Lewis acid sites catalyse two steps. The Lewis acidic sites of the excellent Lewis acid catalyst MIL-100(Sc) has been examined in detail by in situ IR using adsorption of CO and CD₃CN as probe molecules and compared with other MIL-100 materials. The work has been extended to the examination of MOFs containing two different metals, by substitutional approaches within the metal nodes (e.g. Sc-Al, Sc-Fe, Sc-Cr, Sc-Ni, Sc-Co within the trimeric M₃O(O₂C-)₆ nodes of MIL-100). In addition, series of Sc-Fe MIL-100 materials have been prepared that contain α-Fe₂O₃ nanoparticles in the pores of the structure. These composites show higher specific catalytic activity for Lewis acid catalysis than MIL-100(Sc), even though some scandium has been replaced with iron: the origin of this behaviour is discussed. MIL-100(Sc/Fe) has also been explored as a bifunctional catalyst in tandem Friedel-Crafts-oxidation reactions. MIL-100(Sc₆₀/Fe₄₀) was found to give exceptionally high conversions in the Friedel-Crafts-oxidation tandem reaction of 2-methyl indole and ethyl trifluoropyruvate to form a ketone, outperforming the many other materials tested and giving the best balance of the two different types of catalytic sites required to catalyse the reaction. MIL-100(Sc) has also been prepared containing 50% of mono-fluorinated trimesate ligands in the framework for the first time. This fluorinated MIL-100(Sc) has been post-synthetically modified by addition of a di-phenylphosphino group as confirmed by solid state NMR. This can act as a starting point for the future generation of MOF-supported metal phosphine catalysts.
2

Functionalisation of metal-organic frameworks via post-synthetic modification

Amer Hamzah, Harina January 2017 (has links)
This thesis is built upon two areas of research concerning metal-organic frameworks (MOFs). The first focuses on the functionalisation of MOFs via post-synthetic modification (PSM). The second involves the investigation on the potential of MOFs as hosts for insect pheromones. Chapter 1 introduces the field of MOF chemistry, and covers their properties along with a brief description of their applications. The concept of PSM is introduced and a review of recent literature given. The aims of the thesis are also detailed at the end of this chapter. Chapter 2 describes the PSM of [Zr6O4(OH)4(BDC-NH2)6], UiO-66-NH2, via Aza-Michael reactions. Different functionalities were successfully introduced into its pores and the degrees of conversion were determined via 1H NMR spectroscopy. Gas sorption measurements (CO2 and N2) of the PSM products were carried out and compared. In particular, two PSM products were shown to exhibit higher CO2 over N2 selectivity than that for the starting MOF, UiO-66-NH2. Chapter 3 describes a new PSM route in obtaining azole-functionalised MOFs via Mannich reactions. The amino groups in three different MOFs were converted into a range of azole-functionalised MOFs with conversions up to 100%. In particular, one of the PSM reactions afforded a new material, formulated as [Zn3(BDC-NH2)1.32(BDC-NHCH2N2C3H3)1.68(C6H12N2)], based on single crystal X-ray crystallography, 1H NMR and TGA analyses. Gas sorption studies demonstrate increased selectivity for CO2 over N2 for the PSM products. One of the modified MOFs was shown to exhibit a high Hg(II) uptake from aqueous solutions. Chapter 4 introduces the concept of using MOFs as hosts for ant pheromones. The factors which influenced the pheromone loading in zinc and zirconium based MOFs were investigated. The MOFs containing the linker BDC-NHPr (2-(propylamino)benzene-1,4-dicarboxylate) were found to be effective at hosting two types of ant pheromones, 3-octanone and (S)-4-methyl-3-heptanone.
3

Studies on Highly Ion-conductive Metal-Organic Frameworks by Postsynthetic Modification Methods / 合成後修飾法を用いた高イオン伝導性金属-有機構造体の開発に関する研究

Sarango Ramírez, Marvin Kevin 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23458号 / 理博第4752号 / 新制||理||1681(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 吉村 一良, 教授 竹腰 清乃理 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
4

Developing Photo-responsive Metal-Organic Frameworks towards Controlled Drug Delivery

Epley, Charity Cherie 14 July 2017 (has links)
The development of therapeutic drugs or drug systems that enhance a cancer patient's quality of life during treatment is a primary goal for many researchers across a wide range of disciplines. Many investigators turn to nanoparticles (~50-200 nm in size) that tend to accumulate in tumor tissues in order to deliver active drug compounds to specific sites in the body. This targeted delivery approach would reduce the total body effects of current cancer drugs that result in unwanted (sometimes painful and even fatal) side effects. One of the main obstacles however, is ensuring that drugs incorporated into the nanoparticles are anchored such that premature drug release is prohibited. Also, while it is important to ensure strong drug-nanocarrier interactions, the nanocarrier must be able to release the drug when it has reached its biological target. We have developed a nanocarrier that provides a platform for drug systems that could achieve this drug release via the use of a light "trigger". Metal-Organic Frameworks (MOFs) are a relatively new class of often highly porous materials that act as "sponges" for the absorption of various small molecules. MOFs are so named because they consist of metal clusters that are linked by organic compounds to form networked solids that are easily tuned based on the choice of metal and organic "linker". We have developed a MOF nanocarrier incorporating benign zirconium (IV) metal clusters bridged by an organic component that changes shape when illuminated with a light source. The resulting material is therefore not stable upon irradiation due to the organic linker shape change that disturbs the MOF structure and causes it to degrade. When loaded with drugs, this photo-enhanced degradation results in the release of the cargo thereby, providing a handle on controlling drug release with the use of a light trigger. We have demonstrated that in the presence of the MOF nanocarrier incorporating 5-fluorouracil (a clinically available cancer drug), very low toxicity to human breast cancer cells is observed in the dark, however, cell death occurs in the presence of a light source. These reports offer a model MOF nanocarrier system that could be used to incorporate various drugs and therefore tune the system to an individual patient's needs. Furthermore, we also developed a material that is capable of providing magnetic resonance imaging (MRI) contrast by changing the metal to manganese (II). MRI contrast agents are compounds that serve to either darken or brighten an MRI image based on the agent used and therefore they aid in clinical diagnosis by making internal abnormalities easier to spot. Currently gadolinium (III) complexes are the most widely used contrast agents; however, the toxicity of gadolinium (III) has been shown to be responsible for the development of nephrogenic systemic fibrosis in some patients. This manganese material has also shown useful for the attachment of fluorescent dyes that can aid in the benchtop optical diagnosis of biopsies. These reports provide a basis for developing ways to offer controlled drug delivery in cancer patients and to aid in cancer diagnosis using MOF materials, in an effort to reach the goals of comfortable cancer treatment. / Ph. D.
5

SYSTEMATIC POSTSYNTHETIC MODIFICATION OF NANOPOROUS ORGANIC FRAMEWORKS AND THEIR PERFORMANCE EVALUATION FOR SELECTIVE CO2 CAPTURE

Islamoglu, Timur 01 January 2016 (has links)
Porous organic polymers (POPs) with high physicochemical stability have attracted significant attention from the scientific community as promising platforms for small gas separation adsorbents. Although POPs have amorphous morphology in general, with the help of organic chemistry toolbox, ultrahigh surface area materials can be synthesized. In particular, nitrogen-rich POPs have been studied intensively due to their enhanced framework-CO2 interactions. Postsynthetic modification (PSM) of POPs has been instrumental for incorporating different functional groups into the pores of POPs which would increase the CO2 capture properties. We have shown that functionalizing the surface of POPs with nitro and amine groups increases the CO/N2 and CO2/CH4 selectivity significantly due to selective polarization of CO2 molecule. In addition, controlled postsynthetic nitration of NPOF-1, a nanoporous organic framework constructed by nickel(0)-catalyzed Yamamoto coupling of 1,3,5-tris(4-bromophenyl)benzene, has been performed and is proven to be a promising route to introduce nitro groups and to convert mesopores to micropores without compromising surface area. Reduction of the nitro groups yields aniline-like amine-functionalized NPOF-1-NH2. Adequate basicity of the amine functionalities leads to modest isosteric heats of adsorption for CO2, which allow for high regenerability. The unique combination of high surface area, microporous structure, and amine-functionalized pore walls enables NPOF-1-NH2 to have remarkable CO2 working capacity values for removal from landfill gas and flue gas. Benzimidazole-linked polymers have also been shown to have promising CO2 capture properties. Here, an amine functionalized benzimidazole-linked polymer (BILP-6-NH2) was synthesized via a combination of pre- and postsynthetic modification techniques in two steps. Experimental studies confirm enhanced CO2 uptake in BILP-6-NH2 compared to BILP-6, and DFT calculations were used to understand the interaction modes of CO2 with BILP-6-NH2. Using BILP-6-NH2, higher CO2 uptake and CO2/CH4 selectivity was achieved compared to BILP-6 showing that this material has a very promising working capacity and sorbent selection parameter for landfill gas separation under VSA settings. Additionally, the sorbent evaluation criteria of different classes of organic polymers have been compared in order to reveal structure-property relationships in those materials as solid CO2 adsorbents.
6

Conception, synthèse et étude de nouvelles molécules bioactives. Propriétés antivirales et antimélanome

Joly, Jean-Patrick 19 December 2013 (has links)
Malgré des progrès importants réalisés ces dernières années, la lutte contre les infections virales (SIDA, hépatites etc.) et les cancers demeurent un problème de santé mondiale. Ce bref bilan met en évidence la nécessité de développer de nouvelles molécules pour contourner les limites des traitements disponibles actuellement. Cette thèse, articulée autour de trois grands thèmes, s’inscrit dans ce contexte. Nous avons d’abord mis au point de manière rationnelle de nouveaux ligands d’ARN capables de se lier sélectivement à certaines structures secondaires de type tige-boucle ou tige-renflement de l’ARN TAR du VIH-1. Ces ligands interagissent avec l’ARN grâce à l’action coopérative de deux motifs de reconnaissance : (i) une nucléobase modifiée qui peut reconnaitre spécifiquement une paire de base de l’ARN et (ii) des acides aminés qui agissent avec les bases non appariées de l’ARN. Ces deux motifs sont reliés grâce à une matrice aliphatique (ligands non nucléosidiques) ou une matrice 2-désoxyribose (ligands nucléosidiques). Des études biophysiques et biologiques ont été menés en collaboration avec l’équipe du Dr. L. Briant (CEAPBS, UMR5236-CNRS) pour connaitre leur activité antivirale et leur site d’interaction sur la cible. Nous avons ensuite développé des molécules de type benzènesulfonamide thiazoles pour cibler le mélanome résistant aux inhibiteurs de B-Raf. Des modulations effectuées sur ce squelette nous ont permis d’établir des relations structure/activité, en collaboration avec l’équipe de Dr. S. Rocchi (C3M, INSERM U895). Enfin, nous avons développé une stratégie de modification post-synthétique d’oligonucléotides en position anomérique par réaction clic. / Despite significant progress made in recent years, the fight against viral infections (AIDS, Hepatitis, etc.) and cancer remains a global health problem. This brief summary underlines the need for new compounds in order to overcome the limitations of currently available drugs. To this end, the main objective of this thesis is to address these issues by the investigation of three major research projects. We first developed new RNA ligands that selectively bind to RNA secondary structures such as the stem-loop or the stem-bulge of HIV-1 TAR RNA. These ligands interact with RNA thanks to the presence of two RNA binding domains acting in a cooperative manner: (i) a modified nucleobase that can specifically recognize an RNA base pair and (ii) basic amino acids that interact with strong affinity with surrounding free RNA nucleobases. These two patterns are connected by an aliphatic matrix (non-nucleoside ligands) or a 2-desoxyribose matrix (nucleoside-based ligands). Biophysical and biological studies were conducted in collaboration with the team of Dr. L. Briant (CEAPBS, UMR5236-CNRS) in order to study their antiviral activity and their mode of action. We next developed new bioactive molecules featuring a thiazole benzenesulfonamide scaffold to target melanoma cells resistant to B-Raf inhibitors. The modular synthesis of a large number of analogs allowed us to establish the structure/activity relationships, in collaboration with the team of Dr. S. Rocchi (C3M, INSERM U895). Finally, we developed a straightforward and convenient strategy for post-synthetic modification of oligonucleotides at the anomeric position using click chemistry.
7

Conception de nouveaux matériaux hybrides types MOFs bio-inspirés à fonctionnalités avancées pour la catalyse / Design of new MOF-type bio-inspired hybrid materials with advanced functionalities for catalysis

Bonnefoy, Jonathan 27 October 2015 (has links)
Les MOFs sont des solides à la structure cristalline poreuse à base de clusters métalliques et de ligands organiques qui font l'objet de très nombreuses études, dans des champs d'applications très variés, qui vont de la catalyse au « drug delivery », en passant par le stockage de gaz et, plus récemment, en tant que senseurs biologiques. Les ligands organiques, qui les constituent, peuvent lorsqu'ils possèdent un point d'ancrage, comme des groupements amino, être fonctionnalisés grâce à des réactions chimiques. Les travaux présentés dans cette thèse reportent la fonctionnalisation de MOFs, via différentes stratégies, comme des greffages covalent et issues de la chimie de coordination, tel que le couplage peptidique ou encore la synthèse d'urée. Dans cette thèse, est notamment présentée une nouvelle méthode permettant de greffer très rapidement des peptides chiraux dans les nanopores des MOFs. Une large bibliothèque MOF-peptides a ainsi été obtenue et caractérisée. Ces nouveaux composés ont également été utilisés pour l'ancrage de complexes organométalliques dans les cavités des MOFs. Suivant un échange de ligands post-synthétique, il a aussi été possible d'intégrer un complexe organométallique photo-catalytique dans la structure d'un MOF, améliorant ainsi ses activités et sélectivités pour la photo-réduction de CO2. Enfin, les performances catalytiques de ces derniers matériaux MOFs se sont révélées supérieures aux versions homogènes des complexes, ce qui offre de nouvelles opportunités pour la catalyse fine / Metal Organic Frameworks, MOFs, are porous crystalline solid based on metal clusters and organic ligands, investigated for numerous applications such as catalysis, drug delivery, gas storage and, more recently, biosensors. The work presented in this thesis focuses on functionalizing MOFs through different strategies, such as covalent grafting or surface coordination chemistry, through chemical reactions, such as peptide coupling or synthesis of urea. In particular, a new method to very quickly graft chiral peptides into the nanopores of MOFs is reported. A large library of MOF-peptides has thus been obtained and characterized. These novel compounds have also been used for grafting organometallics in the cavities of MOFs. Following a post-synthetic ligand exchange, it was also possible to integrate a photocatalytic complex in the structure of a MOF, improving its activities and selectivities for the photocatalytic CO2 reduction. In general, the catalytic performances of these materials were superior to those of their homogeneous counterparts, thus further expanding the potential of MOFs as well-defined heterogeneous catalysts for fine chemistry

Page generated in 0.2632 seconds