• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paleoethnobotanical Investigation of Pre-Columbian Archaeological Site 8BR158, Cape Canaveral Space Force Station, Florida.

Moreno Palacios, Jennifer I. 01 January 2022 (has links) (PDF)
Starch grain residue analysis was conducted on 18 artifacts collected in 2021 from the archaeological site 8BR158 on the Cape Canaveral Space Force Station. This paleoethnobotanical analysis investigates plant use by the pre-historic inhabitants of the Central Coast of Florida where there is a lack of archaeobotanical research. The starches recovered from the archaeological artifacts were studied in order to identify plants used for culinary and/or medicinal purposes. Wild plants commonly found in Florida, such as acorn (Quercus), were identified in this study that were used for food resources. Domesticated plants such as maize and beans were also identified in this study, which was an unexpected finding. This research contributes information on the relationship between pre-historic plants and the pre-historic inhabitants of the Cape Canaveral area.
2

Silurian vertebrates of Gotland (Sweden) and the Baltic Basin

Bremer, Oskar January 2017 (has links)
During the Silurian, the Swedish island Gotland was positioned close to the equator and covered by a shallow sea called the Baltic Basin. The sedimentary rocks (predominantly carbonates) comprising most of the island today were initially formed in this warm sea, and the relatively complete succession of rocks often contains fossil fragments and scales from early vertebrates, including heterostracans, anaspids, thelodonts, osteostracans, acanthodians, and a stem-osteichthyan. Fossils of early vertebrates become increasingly more common in younger Silurian rocks, but are mostly represented by fragmentary remains and rarer occurrences of articulated jawless vertebrates (agnathans). However, the record of articulated specimens and jawed vertebrates (gnathostomes) are more numerous in rocks of the following Devonian Period. Isolated peaks of agnathan diversity during the Silurian and disarticulated remains of gnathostomes from this period hint at a cryptic evolutionary history. A micropaleontological approach with broader sampling may provide a better understanding of early vertebrate distribution patterns and hopefully give some insights into this history. The objective of this study was to build upon previous sampling on Gotland and to use established frameworks for disarticulated remains with the aim of making comparisons with similar studies performed in the East Baltic. However, difficulties locating the collections from these previous works necessitated a different focus. Undescribed museum collections and newly sampled material enabled some taxonomical revisions and greatly improved the understanding of vertebrate distribution in the youngest part of the Gotland sequence. It also indicated that this interval may represent the early stages of the diversification of gnathostomes that become increasingly dominant toward the end of the Silurian. Furthermore, the description of samples from partly coeval sections in Poland enabled some preliminary comparisons outside of Gotland, and presented a striking example of restricted environmental occurrences for a thelodont taxon. This is encouraging for future sampling and investigations on Gotland. Together with the establishment of a facies-framework comparable to that developed in the East Baltic and correlations to other areas, this may prove fruitful for an increased understanding of early vertebrate distribution and evolution during the Silurian.

Page generated in 0.0446 seconds