• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 5
  • 4
  • 1
  • Tagged with
  • 35
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estratégias de operação de reatores aeróbio/anóxico operados em batelada sequencial para remoção de nitrogênio de água residuária industrial / Strategies of operation of aerobic/anoxic sequential batch reactors for industrial wastewater nitrogen removal

Ono, Alexandre Fernandes 27 July 2007 (has links)
A pesquisa propôs avaliar o desempenho e o comportamento de reatores seqüenciais em batelada com biomassa suspensa e imobilizada, em escala de bancada, na remoção de compostos de nitrogênio. Tais sistemas foram testados como tratamento complementar de reatores sulfetogênico e metanogênico utilizados no tratamento de água residuária industrial com alta concentração de sulfato e amônia. Visou o desenvolvimento de uma estratégia de operação que viabilizasse o uso dos próprios constituintes da água residuária para a maximização da eficiência do tratamento. O estudo foi dividido em 3 etapas principais. Na etapa 1 (181 dias de operação), o reator com biomassa suspensa foi mantido com 4 fases alternadas aeróbio/anóxico e ciclo de 24 horas, e verificou-se a presença da desnitrificação endógena (eficiência de remoção de nitrogênio de 65 \'+ OU -\' 27%). Para a etapa 2 (127 dias de operação), o reator de biomassa suspensa foi submetido ao tempo de ciclo de 12 horas, com uma fase aeróbia (6 horas) e com posterior fase anóxica (6 horas). Nessa etapa adicionou-se efluentes dos reatores metanogênico e sulfetogênico, ricos em ácidos voláteis (ácido acético), com intuito de acelerar o processo desnitrificante. Os resultados obtidos foram baixos em termos de remoção de nitrogênio (42 \'+ OU -\' 21%). Para a etapa 3 (134 dias de operação), foram ensaiados vários meios suportes, através de técnica de microsensores de oxigênio dissolvido, a fim de verificar a formação de biofilme específico (nitrificante/desnitrificante) e optou-se pelo uso do carvão mineral no reator com biomassa imobilizada. Nesta última etapa, foi mantida a estratégia operacional adotada na etapa 2 (ciclo 12 horas), bem como a adição de parcela do afluente na fase anóxica. A remoção de nitrogênio, com períodos aeróbio e anóxico e ciclo de 12 horas, mostrou-se viável no reator com biomassa imobilizada (eficiência de remoção de nitrogênio de 72 \'+ OU -\' 13%). Ao final dos ensaios experimentais, realizaram-se modelagens cinéticas que permitiram a compreensão dos processos convencionais e não convencionais ocorridos nas várias etapas para remoção de nitrogênio, tais como desnitrificação em fase aeróbia e o processo ANAMMOX. / The purpose of this research was to evaluate the performance and the behavior of sequential batch reactors with suspended and immobilized biomass, in benches scale, for the nitrogen composite removal. Such systems had been tested as sulphetogenic and methanogenic reactors complementary treatment, used in an industrial waste water treatment with high sulphate and ammonia concentrations. The research aimed for the development of an operation strategy that could make possible the use of the proper waste water constituent for the improvement of the treatment efficiency. The study was divided into 3 main stages. In stage 1 (181 days of operation), the reactor with suspended biomass was kept with 4 alternating phases aerobic/anoxic and a 24-hour cycle was used, and the endogenous denitrification was verified (nitrogen removal efficiency of 65 \'+ OU -\' 27%). For stage 2 (127 days of operation), the suspended biomass reactor was submitted to a cycle of 12 hours, with an aerobic phase (6 hours) and posterior anoxic phase (6 hours). In this stage effluent of the methanogenic and sulphetogenic reactors, rich in volatile acid (acetic acid), was added to accelerate the denitrify process. The achieved results had been low in terms of nitrogen removal(42 \'+ OU -\' 21%). For stage 3 (134 days of operation), some supports media was tested through dissolved oxygen microsensors technique, in order to check the specific biofilm formation (nitrificant/denitrificant) and the mineral coal was opted to be used in the immobilized biomass reactor. In this last stage it was adopted an operational strategy similar in stage 2 (12 hours cycle), as well as the addition of part of the affluent in the anoxic phase. The nitrogen removal, with aerobic and anoxic periods and 12 hours cycle, revealed feasible in the reactor with immobilized biomass (nitrogen removal efficiency of 72 \'+ OU -\' 13%). In the end of the experimental tests, kinetic modelings were done and had allowed the understanding of conventional and not conventional processes occurred in the stages for nitrogen removal, such as desnitrification in aerobic phase and ANAMMOX process.
12

Study of Extended-gate FET-based Dissolved Oxygen Microsensor

Chen, Ren-He 30 July 2012 (has links)
Water resource is one of the most important natural resources on earth. In recent years, due to the discharges of large industrial and domestic waste-water into the nature, water pollution problem is getting more and more serious and how to monitor the quality of water in real time has become a very important research issue. The dissolved oxygen is one of the critical indexes for evaluating the quality of water. Although the conventional dissolved oxygen detectors presented a high sensitivity and high accuracy, the high cost, large dimension, low capability of batch fabrication and real-time monitoring will limit their applications. In this thesis, an extended-gate field-effect transistor (EGFET) based dissolved oxygen microsensor is developed utilizing micro-electromechanical system (MEMS) technology. The gate voltages of EGFET under different concentrations of dissolved oxygen can be detected by the Cr/Au sensing electrode. To further enhance the sensitivity of the proposed microsensor, a polystyrene layer with very high permeation rate of the dissolved oxygen gas is adopted and coated on the surface of Cr/Au layer. The main processing steps of the presented microsensor involve four photolithographic and four thin-film deposition processes. The influence of the channel¡¦s width/length ratio, source/drain geometry and polystyrene additional layer on the sensitivity of the EGFET based dissolved oxygen microsensor are investigated in this study. The chip size of the implemented dissolved oxygen microsensor is 11 mm¡Ñ13 mm¡Ñ 0.5 mm and the sensing area is 1 mm¡Ñ1 mm. As the dissolved oxygen concentration varies from 2 ppm to 6 ppm, a very high sensitivity (35.36 mV/ppm) and sensing linearity (98.83%) of the proposed EGFET microsensor can be demonstrated. In addition, the response time of the presented dissolved oxygen microsensor is only about III 180~200 seconds, hence it is very suitable for developing a real-time monitoring microsystem.
13

Development of Flexural Plate-wave Device with Focused Interdigital Transducers Design

Lin, Ji-Yuan 31 July 2012 (has links)
The conventional flexural plate-wave (FPW) device has advantages of high mass sensitivity, low phase velocity and low operation frequency. However, conventional FPW devices usually present a high insertion loss and low fabrication yield. This thesis aimed to reduce the insertion loss of conventional FPW devices. The influences of geometry of inter-digital transducers (IDTs), pair number of IDTs, depth of focus and length of delay line on the insertion loss of FPW device are investigated. This research utilizes bulk micromachining technique to develop a low insertion-loss FPW device and the main fabrication steps include seven thin-film deposition and four photolithography processes. As the wavelength is 100 £gm, pair number of IDTs is 20, depth of focus is 1000 £gm and length of delay line is 500 £gm, the measured insertion loss of the implemented FPW device with conventional parallel-type IDTs and novel focus-type IDTs are equal to -48 dB and -45.06 dB, respectively. On the other hand, the insertion loss of FPW device with focus-type 25-pairs IDTs (-43.69 dB) is smaller than that of FPW device with focus-type 20-pairs IDTs (-45.06 dB). Additional, the measured insertion loss of FPW device with 500 £gm focus depth (-41.47 dB) is smaller than that of FPW devices with 1000 £gm focus depth (-43.69 dB) or with 1500 £gm focus depth (-45.39 dB). Furthermore, the FPW device with 500 £gm delay line presents a smaller insertion loss (-40.46 dB) than that of FPW devices with 250 £gm delay line (-41.47 dB) or with 750 £gm delay line (-40.95 dB). Finally, under the optimized specifications (focus-type/25 pairs IDTs, 500 £gm focus depth and 500 £gm delay line), the FPW-based microsensor demonstrates a high sensitivity (91.53 cm2/g), high sensing linearity (99.18 %) and low insertion loss (-40.46 dB), hence it is very suitable for development of biomedical sensing microsystem.
14

Development of an Innovative Micro Capacitive Humidity Sensor with Double Polyimide Thin Films and Interlacing Out-of-plane Electrodes

Li, Yao-Yu 21 July 2006 (has links)
Polyimide thin films have been widely used in microelectronic and Micro-Electro-Mechanical System applications due to their many excellent characteristics including low dielectric constant, easy processing, good step coverage ability, high heat resistance and chemical resistance. This paper presents the design, fabrication and complete characterization of an innovative capacitive relative humidity (RH) microsensor. The double polyimide thin films adopted in this study function as a capacitance sensing layer and a protecting layer of top electrodes respectively. To improve the humidity sensitivity and responding speed, interlacing out-of-plane electrodes are designed in the RH microsensor. The higher sensitivity ( 1.25 pF/¢HRH ), optimized sensing linearity ( 99.968¢H ) , very low hysteresis ( 0.24 ¢HRH ), excellent stability ( 1.36 ¢HRH ) , high accuracy ( ¡Ó 1.12 ¢HRH ) and fast response ( within 1 seconds ) characteristics of the RH microsensor have been demonstrated in this thesis.
15

A Study on High-linearity and Low-hysteresis Capacitive Humidity Microsensors

Hsieh, Chia-hsu 27 August 2008 (has links)
People for long term exposed to an air-conditioned but highly humid environment are vulnerable to hyper-sensitivity or asthma triggered by fungi or dust mites. This thesis aims to develop a high-linearity and low-hysteresis capacitive relative humidity (RH) microsensor to more precisely accommodate the humidity of living spaces. To reduce the hysteresis and enhance the linearity, this research uses not only one polyimide (PI) thin film as a humidity sensing layer but also utilizes another PI thin film as a protecting layer of the top electrodes. To improve further the RH sensitivity and responding speed, interlacing out-of-plane electrodes are designed in the RH microsensor. The main processing steps of the RH sensor developed in this study involve at least five photolithographic and four thin film deposition processes. The influences of sensing area, number of electrode pairs and testing temperature on the sensitivity and sensing linearity of humidity microsensors were investigated. Based on the measurement results, the sensitivity apparently increase as well as the sensing area (2 mm ¡Ñ 2 mm: 0.12 pF/%RH, 3 mm ¡Ñ 3 mm: 0.48 pF/%RH, 5 mm ¡Ñ 5 mm: 1.09 pF/%RH), and decrease with the number of electrode pairs (40 pairs: 0.51 pF/%RH, 20 pairs: 0.4 pF/%RH) and increase with the testing temperature. The thesis has demonstrated that the capacitance of the RH sensor vary from the relative humidity with a very linear relationship (linearity: 98.8%~99.99%) over the range of 30~70%RH. Finally, to increase effectively the surface area and to reduce further the hysteresis, three-dimensional (3D) moisture entrances and exits were designed and a very low hysteresis value (0.5%RH) can be achieved.
16

Design and Fabrication of Bulk Micromachined Piezoresistive Pressure Sensor

Lin, Yu-Ren 31 August 2009 (has links)
Utilizing the bulk and surface micromachining technologies, this thesis designed and fabricated a piezoresistive pressure microsensor for developing an in-vivo and real-time biomedical detection microsystem to monitor the uric pressure in patients¡¦ bladder. In this study, the main processing steps include the implantation of a moderate boron ion concentration into the N-epitaxial silicon layer to form the piezoresistors, anisotropic etching the backside silicon substrate to create a cavity by 30% KOH solution in 80¢XC temperature, and anodic bonding of the silicon based pressure microsensor and the hole-drilled glass sustain. To obtain the optimum design specification of the piezoresistive pressure microsensor, this study compared the characterization of the four types of devices with three different pressure sensing area (As) and two different length/width ratios (L/W) of the N-epitaxial piezoresistors. Based on the measurement results, the highest sensitivity (0.0076mV/(V*kgf/cm2) can be achieved as the As and the L/W ratio are equal to 1050 ¡Ñ 1050 £gm2 and 90/9 £gm/£gm, respectively. Such sensitivity is suitable for the application of bladder pressure detection microsystem. A very high sensing linearity (99.6%) can also be demonstrated in this research and this value approach to that of the commercial pressure sensor. On the other hand, through cooperation with another laboratory, this work has established a prototype of the uric pressure detecting microsystem by assembled with the piezoresistive pressure microsensor, a control ASIC and a radio-frequency (RF) module.
17

Microcapteurs chimiques basés sur des couches nanométriques de silicium polycristallin : application à la détection de plomb / Chemical microsensors based on polycrystalline silicon layers at nanoscale : application to lead detection

Le Borgne, Brice 29 November 2016 (has links)
Ces travaux de thèse ont pour but de mettre en œuvre un capteur de plomb à base de nanostructures de silicium polycristallin. L'étude physique des structures de type nanorubans ou nanofils de silicium polycristallin a montré que ces derniers possèdent de faibles qualités cristallines mais des propriétés électriques suffisantes pour être utilisées comme éléments sensibles d'un capteur. Les nanorubans ont été fonctionnalisés par greffage spontané des sels de diazonium, capables de pré-concentrer des ions de plomb à la surface de la nanocouche. Cette fonctionnalisation a permis de détecter des traces de plomb, le capteur atteignant une limite de détection de 2.10-7 mol/L. Ces résultats montrent ainsi que la détection de plomb est possible avec des nanostructures de silicium polycristallin dont le procédé de fabrication est relativement bon marché. Le développement d'un transistor gate-all-around (GAA) à base de nanofils de silicium polycristallin est proposé dans cette thèse. Son utilisation avec deux grilles indépendantes a permis de caractériser électriquement et physiquement les nanofils de silicium polycristallin. Les caractéristiques électriques du transistor GAA sont par ailleurs encourageants pour une utilisation en tant que capteur pour diminuer la sensibilité et les limites de détection d'ions de plomb. / The aim of this research work is to implement a lead ions sensor based on polycrystalline silicon nanostructures. This material has been intensively studied by electrical and physical characterization. This study showed that structures such as polysilicon nanoribbons or nanowires have poor crystalline quality but satisfying enough electrical properties to be used as a sensor sensible elements. Nanoribbons have been functionnalized by spontaneous grafting of diazonium salts that enable lead ions trapping at the surface of these nanoribbons. Thanks to the functionnalization, sensor reached a limit detection as low as 2.10-7 mol/L. These results prove that sensing lead ions is possible thanks to low-cost polysilicon nanostructures. Development of a gate-all-around transistor based on polycrystalline silicon nanowires is proposed in this manuscript. It could lead to increase sensibility of that type of microsensors.
18

Estratégias de operação de reatores aeróbio/anóxico operados em batelada sequencial para remoção de nitrogênio de água residuária industrial / Strategies of operation of aerobic/anoxic sequential batch reactors for industrial wastewater nitrogen removal

Alexandre Fernandes Ono 27 July 2007 (has links)
A pesquisa propôs avaliar o desempenho e o comportamento de reatores seqüenciais em batelada com biomassa suspensa e imobilizada, em escala de bancada, na remoção de compostos de nitrogênio. Tais sistemas foram testados como tratamento complementar de reatores sulfetogênico e metanogênico utilizados no tratamento de água residuária industrial com alta concentração de sulfato e amônia. Visou o desenvolvimento de uma estratégia de operação que viabilizasse o uso dos próprios constituintes da água residuária para a maximização da eficiência do tratamento. O estudo foi dividido em 3 etapas principais. Na etapa 1 (181 dias de operação), o reator com biomassa suspensa foi mantido com 4 fases alternadas aeróbio/anóxico e ciclo de 24 horas, e verificou-se a presença da desnitrificação endógena (eficiência de remoção de nitrogênio de 65 \'+ OU -\' 27%). Para a etapa 2 (127 dias de operação), o reator de biomassa suspensa foi submetido ao tempo de ciclo de 12 horas, com uma fase aeróbia (6 horas) e com posterior fase anóxica (6 horas). Nessa etapa adicionou-se efluentes dos reatores metanogênico e sulfetogênico, ricos em ácidos voláteis (ácido acético), com intuito de acelerar o processo desnitrificante. Os resultados obtidos foram baixos em termos de remoção de nitrogênio (42 \'+ OU -\' 21%). Para a etapa 3 (134 dias de operação), foram ensaiados vários meios suportes, através de técnica de microsensores de oxigênio dissolvido, a fim de verificar a formação de biofilme específico (nitrificante/desnitrificante) e optou-se pelo uso do carvão mineral no reator com biomassa imobilizada. Nesta última etapa, foi mantida a estratégia operacional adotada na etapa 2 (ciclo 12 horas), bem como a adição de parcela do afluente na fase anóxica. A remoção de nitrogênio, com períodos aeróbio e anóxico e ciclo de 12 horas, mostrou-se viável no reator com biomassa imobilizada (eficiência de remoção de nitrogênio de 72 \'+ OU -\' 13%). Ao final dos ensaios experimentais, realizaram-se modelagens cinéticas que permitiram a compreensão dos processos convencionais e não convencionais ocorridos nas várias etapas para remoção de nitrogênio, tais como desnitrificação em fase aeróbia e o processo ANAMMOX. / The purpose of this research was to evaluate the performance and the behavior of sequential batch reactors with suspended and immobilized biomass, in benches scale, for the nitrogen composite removal. Such systems had been tested as sulphetogenic and methanogenic reactors complementary treatment, used in an industrial waste water treatment with high sulphate and ammonia concentrations. The research aimed for the development of an operation strategy that could make possible the use of the proper waste water constituent for the improvement of the treatment efficiency. The study was divided into 3 main stages. In stage 1 (181 days of operation), the reactor with suspended biomass was kept with 4 alternating phases aerobic/anoxic and a 24-hour cycle was used, and the endogenous denitrification was verified (nitrogen removal efficiency of 65 \'+ OU -\' 27%). For stage 2 (127 days of operation), the suspended biomass reactor was submitted to a cycle of 12 hours, with an aerobic phase (6 hours) and posterior anoxic phase (6 hours). In this stage effluent of the methanogenic and sulphetogenic reactors, rich in volatile acid (acetic acid), was added to accelerate the denitrify process. The achieved results had been low in terms of nitrogen removal(42 \'+ OU -\' 21%). For stage 3 (134 days of operation), some supports media was tested through dissolved oxygen microsensors technique, in order to check the specific biofilm formation (nitrificant/denitrificant) and the mineral coal was opted to be used in the immobilized biomass reactor. In this last stage it was adopted an operational strategy similar in stage 2 (12 hours cycle), as well as the addition of part of the affluent in the anoxic phase. The nitrogen removal, with aerobic and anoxic periods and 12 hours cycle, revealed feasible in the reactor with immobilized biomass (nitrogen removal efficiency of 72 \'+ OU -\' 13%). In the end of the experimental tests, kinetic modelings were done and had allowed the understanding of conventional and not conventional processes occurred in the stages for nitrogen removal, such as desnitrification in aerobic phase and ANAMMOX process.
19

Electrochemical microsensor with in-situ fabricated Ag/AgCl reference electrode for high-pressure microfluidics / Elektrokemisk mikrosensor med referenselektrod av Ag/AgCl, tillverkad i mikrofluidikchip som tål höga tryck

Södergren, Simon January 2017 (has links)
Electroanalysis offers cheap and selective analysis of interesting solutions. However, one of the most common drawbacks is the accessibility for electrochemical sensing. By using high-pressure microfluidics with an integrated three-electrode system, new possibilities open for increased accessibility. Therefore, there is a need to fabricate sustainable reference surfaces into highly pressure tolerant microchannels. In this thesis, Ag/AgCl reference surfaces were in-situ fabricated in high-pressure microfluidic chips. This was performed by electroplating Ag on thin film Pt in microchannels and then chlorinating the silver into Ag/AgCl. Electroanalysis of ferrocyanide was carried out in a microfluidic chip using one of the in-situ fabricated Ag/AgCl references. The half-wave potential showed to be around +251 mV and the electrochemical water window was measured to 1400 mV with a range between -300 mV and +1100 mV. The obtained values show to be comparable to reference data of similar experiments performed elsewhere. For some applications of electrochemistry, a catalysis surface is beneficial. Nanoporous Pt black has proved to generate high catalytic performance in electrochemistry. Therefore, attempts have been carried out to fabricate Pt black onto Pt thin films, with the vision to succeed with such fabrication within microfluidic channels. To summarize, this project work has showed a possibility to in-situ fabricate Ag/AgCl reference surfaces. The project has also showed how to use such surfaces as reference electrodes for electroanalysis in high-pressure microfluidic chips. Lastly, new challenges and ideas to fabricate catalysis surfaces on thin film electrodes in flow channels have been presented. By this thesis, one more step has been taken to increase the accessibility for electroanalysis.
20

A Plastic-Based Thick-Film Li-Ion Microbattery for Autonomous Microsensors

Lin, Qian 17 February 2006 (has links) (PDF)
This dissertation describes the development of a high-power, plastic-based, thick-film lithium-ion microbattery for use in a hybrid micropower system for autonomous microsensors. A composite porous electrode structure and a liquid state electrolyte were implemented in the microbatteries to achieve the high power capability and energy density. The use of single-walled carbon nanotubes (SWNTs) was found to significantly reduce the measured resistance of the cathodes that use LiAl0.14Mn1.86O4 as active materials, increase active material accessibility, and improve the cycling and power performance without the need of compression. Optimized uncompressed macro cathodes were capable of delivering power densities greater than 50 mW/cm2, adequate to meet the peak power needs of the targeted microsystems. The anodes used mesocarbon microbeads (MCMB) with multi-walled carbon nanotubes (MWNTs) and had significantly better power performance than the cathodes. The thick-film microbattery was successfully fabricated using techniques compatible with microelectronic fabrication processes. A Cyclic Olefin Copolymer (COC)-film was used as both the substrate and primary sealing materials, and patterned metal foils were used as the current collectors. A liquid-state electrolyte and Celgard separator films were used in the microbatteries. These microbatteries had electrode areas of c.a. 2 mm x 2 mm, and nominal capacities of 0.025-0.04 mAh/cell (0.63-1.0 mAh/cm2, corresponding to an energy density of ~6.3-10.1 J/cm2). These COC-based batteries were able to deliver constant currents up to 20 mA/cm2 (100% depth of discharge, corresponding to a power density of 56 mW/cm2 at 2.8 V) and pulse currents up to 40 mA/cm2 (corresponding to a power density of 110 mW/cm2). The high power capability, small size, and high energy density of these batteries should make them suitable for the hybrid micropower systems; and the flexible plastic substrate is also likely to afford some unique integration possibilities for autonomous microsystems. The mechanism by which the SWNTs improved the rate performance of composite cathodes was studied both experimentally and theoretically. It was concluded that the use of SWNT improved cathode performance by improving the electronic contacts to active material particles, which consequently improved the accessibility of these particles and improved the rate capability of the composite cathodes.

Page generated in 0.0524 seconds