• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 5
  • 2
  • 1
  • Tagged with
  • 71
  • 46
  • 40
  • 38
  • 31
  • 28
  • 23
  • 21
  • 19
  • 17
  • 16
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Microstructural and Micro-Mechanical Characterization of As-built and Heat-treated samples of HASTELLOY X produced by Laser Powder Bed Fusion Process

Sanni, Onimisi January 2022 (has links)
Microstructure and micro-mechanical characterization of as-built and heat-treated samples of Hastelloy X produced by laser powder bed fusion (LPBF) process has been carried out in this study. As-built LPBF blocks were solution heat-treated at 1177°C and 1220°C followed by fast cooling. The microstructure of as-built and heat-treated samples were studied by light optical microscopy, scanning electron microscopy, and electron backscatter diffraction. Instrumented indentation micro Vickers testing was performed to obtain microhardness and elastic modulus of asbuilt and heat-treated samples. Microtensile samples from as-built and heat-treated blocks were prepared and polished for mechanical characterization. Microtensile testing inside the scanning electron microscope was performed to evaluate the mechanical properties and to get information about the microstructural changes during plastic deformation. Microstructure characterization revealed disrupted epitaxial grain growth for the as-built samples whereas the two heated-treated Hastelloy X samples exhibited equiaxed grains with varying twin fractions. As-built Hastelloy X samples exhibited higher mean hardness than heat-treated samples. The yield strength of as-built samples reveals higher values as compared to conventional wrought Hastelloy X samples, whereas lower yield strength and higher elongation were observed for heat-treated samples as compared to as-built samples. Higher elongation and lower yield strength values were observed for the samples solution heat-treated at 1220°C compared to the solution heat-treated at 1177°C. Microstructural evaluation at different plastic strains during in-situ microtensile testing reveals a clear difference in dislocation density for as-built and heat-treated samples.

Page generated in 0.055 seconds